Canola growth and development

Rob Norton.
Regional Director ANZ

Simon Craig
BCG

Better Crops, Better Environment ... through Science

BCG Fungicide Diagnostic Schools, Quambatook, Horsham, Westmere, October 2012.
Two things happening

• The crop gets bigger
 – **Growth** = increase in size and weight
 – Driven by light, nutrients, water, temperature

• The crop changes what part is growing
 – **Development** = different types of tissue grow
 – Driven by temperature (usually) & daylength
Canola growth key

- DC or Z scale for cereals.
- Canola uses a different scale because it is an indeterminate flowering habit which means that flower production and grain filling are concurrent.
- Communication

 Especially with respect to herbicide and fertilizer application
 Situations where timing is critical
Canola Growth Scale – 6 Stage

Stage 0

Vegetative growth

Stage 1

Stage 2

Stage 3

(Adapted from NSW Canola Guide)

Stage 4

Stage 5

Stage 6
First Phase Change - Germination

- Canola seed has almost no dormancy
- Seed takes on water
- Coat splits
- Seedling root emerges – coleorhiza
- Seedling leaves taken to the surface
Germination leads to emergence

- Cotyledon leaves – previous “halves” of the seed
- Quite delicate and both frost and disease susceptible
Thermal Time & Germ./Emerg.

• Is the sum of temperatures “sensed” by the plant
• Measured as “degree-days”
• $^\circ$d = Sum of daily (Min+Max)/2 above a “base” temperature.
• **Canola seed requires around 80 $^\circ$d (base 3$^\circ$) to get from germination to emergence.**
 - It will take **10 days** of minimum 7 and maximum 15, to get from germination to emergence. $(7-3+15-3)/2 = 8$ $^\circ$d each day
 - It will take **20 days** of minimum 4 and maximum 10, to get from germination to emergence. $(4-3+10-3)/2 = 4$ $^\circ$d each day
 - triazine post-sowing/pre-emergence window
Early Development

- Cotyledons are the original “halves” of the seed (2=dicot).
- “Cabbage” stages, Leaf numbers often quoted.
- Rapid cover
 - Weed control
 - Reduce soil evaporation
 - Capture radiation

2 leaf stage

True leaves

Cotyledons (seed leaves)
Growth and Development are different

Ground cover of Dunkeld and Pinnacle at the same 4-5 leaf growth stage

Dunkeld (LAI = 0.53) Pinnacle (LAI = 0.26)
Leaf & canopy development

- Most Australian lines are “spring” types.
- Retain enough daylength response to develop a canopy.
- Canola can produce between 9 and 30 leaves per stem.
- Temperature driven
 - 80 °d/leaf – variety specific (phyllocron)
- Earlier cv.s have fewer leaves.
Importance of timing - herbicides

- Roundup Ready® – genes for tolerance to glyphosate work fail after the 6 leaf stage of development
 - 0-2 leaf + 4-6 leaf recommended for double hit (14 d apart)
 - Min 5, Max 15 = will progress 1 leaf per 8 days
 - Min 10, Max 20 = will progress 1 leaf each 5 days
- Intervix® – also 2-6 leaf stage – weed emergence rather than crop susceptibility.
Importance of timing - grazing

- Sow early
- Winter types – 2-4 t/ha
- Support 0.2–0.3 kg/hd/d
- No health issues.
- Grazing from 5 leaf to running up <10 cm.
- Herbicide withholding periods
 - Intervix - 5 weeks
 - Select – 3 weeks
- Blackleg worse
Phase Change – veg/rep.

• Measure the season by
 – Going through a cold time (<3°C) (vernalization)
 • Most Australian lines have a VRN requirement (small ~20 days to meet)
 • Not getting a cold period holds the crop vegetative.
 – Checking on the length of day (daylength) = spring type
 • In most of our varieties critical daylength LONGER than ~11 h
 – Suppresses flowering until late July/early August from a “normal” sowing
 – If sown really early, may get DL met in autumn rather than spring.
 – Waiting until they are big enough (9-15 leaves) – thermal time (Intrinsic earliness)
 • 300 to 500 °d from emergence to flowering (variety).
Period of maximum growth

- From buds visible until flowering
- Stem rapidly grows and carries the buds upwards
- Peak N demand.
- Attention to nutrition over this period
Timing for tissue testing

- Can test for N, S, micros.
- Depend on tissue – YML or whole shoot
- Rapid decline in critical values –
- Must know the stage to interpret.
- If too early maybe roots not down to the nutrient present (S, B).

<table>
<thead>
<tr>
<th>STAGE</th>
<th>NO$_3$ (mg/kg)</th>
<th>S (%)</th>
<th>B (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5 leaf</td>
<td>17000</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>5-6 leaf</td>
<td>15000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-8 leaf</td>
<td>6700</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Buds Visible</td>
<td>4000</td>
<td>0.36-0.5</td>
<td></td>
</tr>
<tr>
<td>2 Early SE</td>
<td>3300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>1300</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>First Fl</td>
<td>800</td>
<td>0.24-0.3</td>
<td></td>
</tr>
<tr>
<td>Petiole YML</td>
<td></td>
<td>Whole Shoot</td>
<td>YML</td>
</tr>
</tbody>
</table>
Diagnosis of N deficiency

- N is mobile
- If the crop is running out of N it will “drop” its oldest leaves
- Read this with care understanding
 - Disease
 - Drought
- Good diagnostic for N
- S deficiency will show in youngest leaves.
Timing of topdressing

- Nitrogen at Wallup 2011: high = 100, Mod = 50, Low = 10 kg N/ha
 - Before flowering important.
 - Rate was more important than timing

<table>
<thead>
<tr>
<th>Rate</th>
<th>All predrilled</th>
<th>All topdressed stem elongation</th>
<th>All topdressed early flowering</th>
<th>50:50 split; predrilled & topdressed stem elongation</th>
<th>50:50 split; predrilled & topdressed early flowering</th>
<th>Control (no added N)</th>
<th>LSD (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>2.11</td>
<td>2.30</td>
<td>1.92</td>
<td>2.10</td>
<td>2.16</td>
<td>1.36</td>
<td>0.33</td>
</tr>
<tr>
<td>Moderate</td>
<td>1.80</td>
<td>2.11</td>
<td>1.63</td>
<td>2.03</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1.60</td>
<td>1.37</td>
<td>1.67*</td>
<td>1.55</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Similar situation for S topdress

- Data from P Hocking.

<table>
<thead>
<tr>
<th>S applied Kg/ha</th>
<th>Sowing</th>
<th>5-6 Leaf</th>
<th>Buds Visible</th>
<th>Stem Elongation</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.73</td>
<td>1.62</td>
<td>1.56</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.15</td>
<td>2.26</td>
<td>2.11</td>
<td>2.19</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Flowering period

- Initially a slow rate
- Up to 20 new flowers per plant per day.
- Later flowers not usually big contributors to final yield.
- Duration continues as long as temperatures favourable (<32 C).
- Leaves remobilized into seed/pods.
- Very thick canopies can shade themselves.
Cabbage aphid

- Canola can tolerate quite a lot of aphid damage
- Occur in warm dry conditions.
- Often by this time the parts affected are not likely to contribute to added yield.
- BUT – make an assessment. Yield losses of 30% have been measured.
Completed Flowering

- Moisture stress and/or high temperatures terminate flower development.
- Pods still photosynthetic, oil biosynthesis very active until the crop dries.
Time between last flower & windrowing –
How long does it take to dry the washing?
Maturity

- Moisture content declines
- Oil biosynthesis slows.
- Some fatty acid alterations (temp.)
- Dries from top down.
- About 30 days after last flower is seen (temp. dependant.)
Seed maturity

- Chlorophyll significant oil contaminant.
- Green seed = bad.
- Timing of windrowing.
- 50-60% colour change.
http://anz.ipni.net

Better Crops, Better Environment ... through Science