

Nutrition issues – 2017

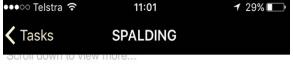
Variable conditions from 2016 – implications
Split germinations & uncertain yield potentials
N decisions from here on in.

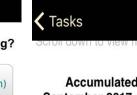
Rob Norton, IPNI Regional Director

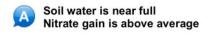
Spalding, South Australia, Wednesday August 09, 2017

With thanks to Damien Sommerville

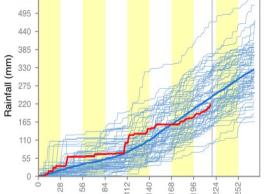
Better Crops, Better Environment ... through Science

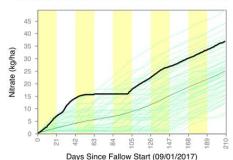

The season....Spalding

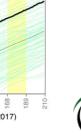

9 months

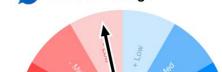


Season = slower start but making up ground – N variable.









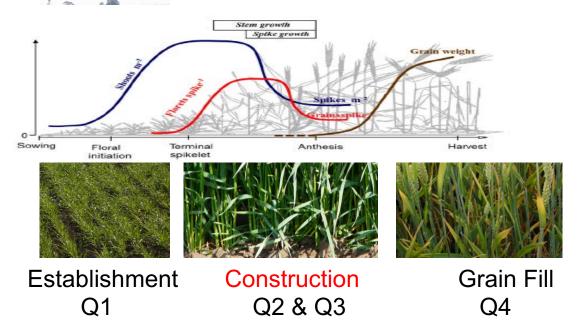
Days since season start (01/01/2017)

Close to Average

Departure from average on 06 August (for January to September 2017 season) is,

-19mm from Average (-0.3sd)

Starting in

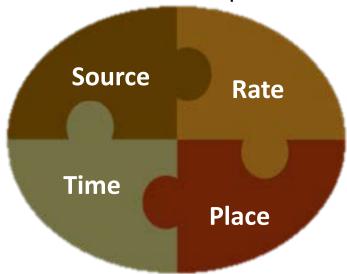

and lasting for

Where we are now...

& what to worry about

N, P, K, S, Ca, Mg, B, Zn, Mn, Cu, Mp

- Mobile nutrients N, S, B profile distribution
- Immobile nutrients offtake and soil test



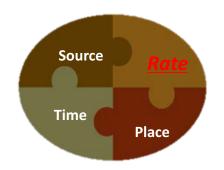
N is – again – the big ticket item.

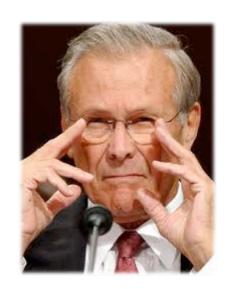
 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

• Every year the RIGHT's change – tactical N management

What to know to get an N rate?

- Known Knowns maybe
 - What N is there & is it accessible
 - Soil test / Soil guess (root depth).
 - Rough yield estimate.


Known Unknowns


- Soil mineralisation in-crop.
- Losses of soil & applied N.
- How much supplied ends up in the grain.
- Improved yield estimate as season unfolds.

Unknowns

Frost, bugs, late heat.

What do you know?

- Known Knowns should be known
 - What N is there & is it accessible
 - Soil test / Soil guess (root depth).

Cut for hay - loose 140 kg N Harvest for grain – 100 kg N

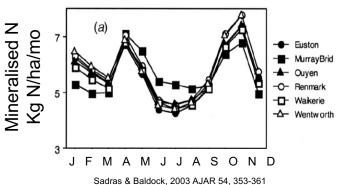
Residue from a 5 t crop

- Burn Loose 30 kg N/ha
- Bale Loose 40 kg N/ha
- Mulch Loose 30 kg N/ha (immobilisation)
- N from legume residues to the next cereal crop: 25-35%
- N from cereal residues to the next cereal crop:

Location	Treatment	N in Stubble (kg N/ha)	N in next crop (% stubble N)
Karoonda	Surface	12	2.1
	Incorp	12	3.1
Temora	Surface	55	8.7
	Incorp		15.4
Horsham	Surface	32	4.4
	Incorp		5.0

Hart Field Site

– 50 kg N/ha

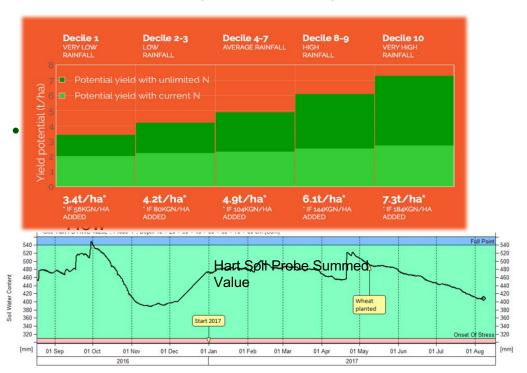


Gupta, McBeath, Richardson, Kirkegaard, Sanderman (CSIRO unpublished)

Sources of N

- In-crop mineralisation
 - Now (nil) 37 kg N to date
 - Maybe 25 kg N to come
 - Spring dependent
 - OC% dependent
- Overall "native" N supply
 - 50 kg N/ha
 - Enough for 1.2 t/ha wheat, 0.6 t/ha canola
- To reach 4.5 t/ha
 - Meet the deficit of 110 kg N/ha
 - Losses along the way?

Total N ~ 60 kg N/ha Winter ~ 0.1 kg N/ha/d Autumn/Spring ~ 0.2 kg N/ha/d



What do you know?

- Known Knowns should be known
 - Yield estimate (YPL 4.5 t/ha)

Yield prophet, WUE, paddock history, bunions Wheat N demand = Yield * 20 / Efficiency

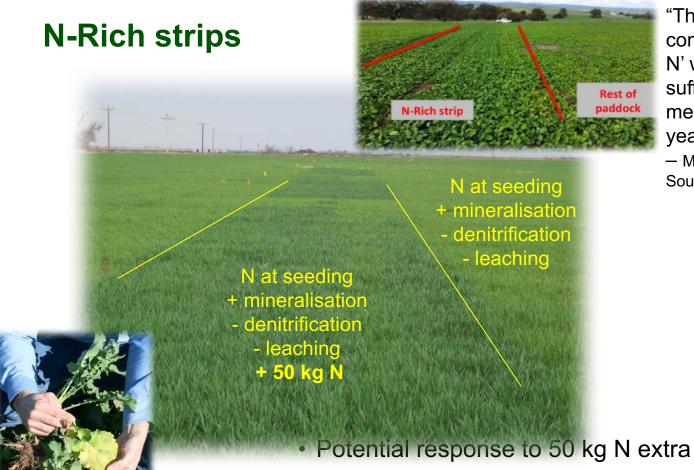
4.5 * 20 / 0.50

= 180 kg N/ha

Reasonable water under the crop,

Probability is 43.2%

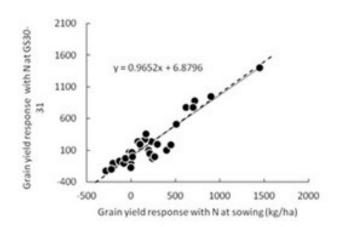
This has occurred approximately 4 out of every 10 years during similar ENSO patterns.

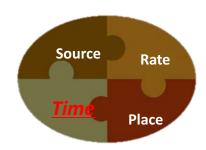

Past skill is "Low"

Historically, predictions for this season have been "consistent" 55% of the time and "inconsistent" 45% of the time. (LEPS -1%)

50 kg N 30 mm ASW 1% OC

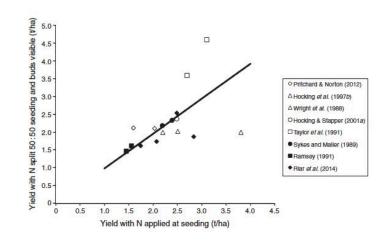
"The strips give me the confidence 'Not to apply N' when the crop is N sufficient. This has saved me a lot of \$\$\$ over the years."


 Mark Branson, grain grower, South Australia.



- - May not want to realise this potential.

Penalty to delaying N?



Loss processes operating
Leaching
Denitrification

Late rains

Opportunities

Timing relative to growth stageRecovery of 50 kg N in grain & protein

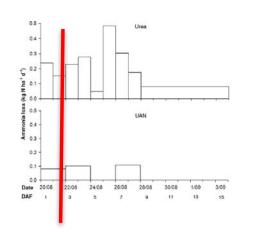
Method & timing of N application	No. of	% increase	v's control	% fert N
	trials	yield	Protein	recovery
				in grain
mid row banded at sowing	12	13.3	5.5	29.9
Broadcast & incorporated by sowing	7	12.8	3.8	26.8
Topdress at 5-leaf stage	4	18.8	6.2	45.5
Topdress at fully tillered stage	7	18.5	7.2	44.4
Topdress at boot stage	12	14.6	10.8	47.2
Topdress at mid flowering	12	5.5	12.4	34.1

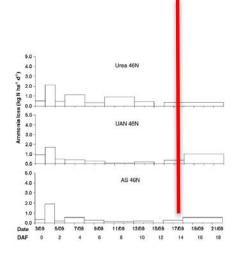
^{*}sites include: Dookie 2000 - 2002, Gnarwarre 2000 - 2002, Naracoorte 2000, Clare 2000 - 2001, Woorndoo 2000, Glenthompson 2001, Lake Bolac 2002.

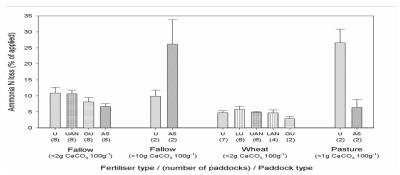
Early N = Yield – window is from DC32 to DC39

Late N = Protein – window is DC55 but before DC70

Incitec Pivot Ltd, University of Melbourne, GRDC

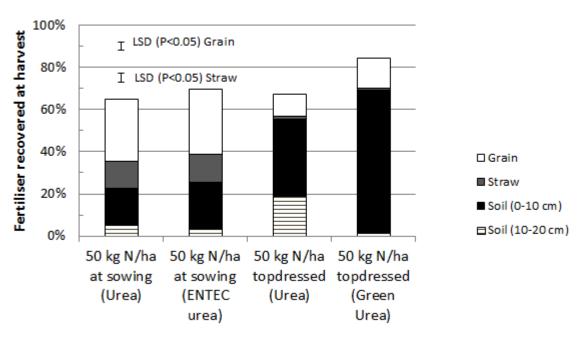



Timing relative to rain & situation

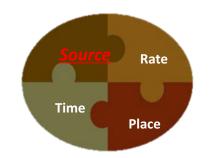

Turner et al. 2012 (Nutrient Cycling in Agroecosystems, 93, 113-126)

Wimmera

- Rain 9 DAF
- 23% N loss from urea
- 12% N loss from UAN
- 12% N loss from AS
- Rain 1 DAF
- 13% N loss from urea
- 3% N loss from AS



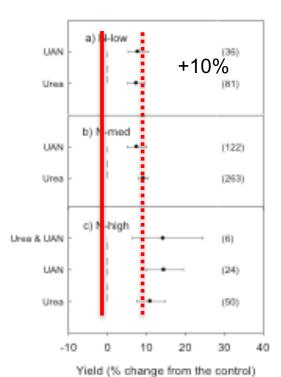
What happens to the N if it does not rain?



Ash Wallace & Roger Armstrong; Horsham, 2014 – a dry year - 1.5 – 2.2 t/ha Losses in wetter years?

N source – foliar, soil or what??

- N is taken up through the leaves
- Limited by either urea toxicity, salt burn or leaf area.



- The amount taken up through leaves is probably 10-15 kg N/ha
- Timing is important
- Worst effect if flag leaf is damaged
- Rest is taken up through roots.

Source Comparisons

• Little agronomic difference between fluid/granular

Selection of source maybe more on logistics than just efficiency.

- Ease of handling
- Quantities applied
- Product quality
- Application
- Carryover

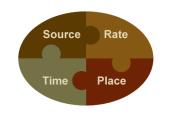
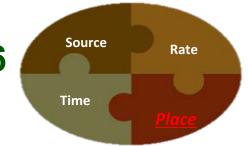


Fig. 1: The effect of different N sources (urea or UAN) on grain yield (a) and N uptake (b).

N is – again – the big ticket item.



 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

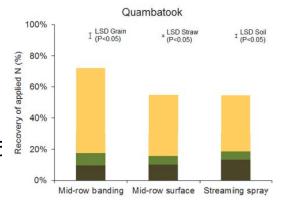
- Foliar & soil interaction with source.
 - In-crop mid-row banding

Mid-row banding urea in-season 2016

Mid-row skip-row banding of Urea

Ash Wallace, DEDJTR, Hsm

- Comparing:
 - Banding above and below surface
 - Streaming nozzles
 - Conventional nozzles
 - Topdressed granular



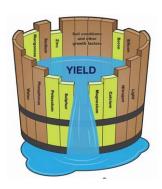
Mid-row banding urea in-season 2016

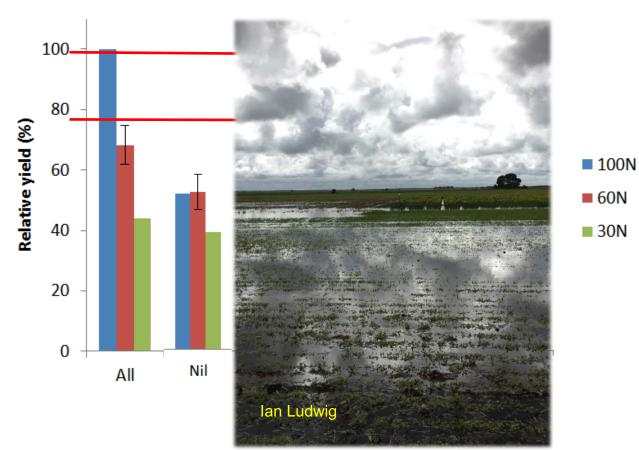
- Protein response to MRB at Quambatook
- Yield (+0.5 t/ha) response at Longerenong
- Responses varied with site, time of application and follow-up conditions.
 - 'Why?' is the key
- Higher plant uptake from mid-row banding (15N studies)
 - 60-75% of fertiliser 'taken up' vs. 40-65
 - Already commercial in Canada (corn) and some local growers

Quambatook (50 kg N/ha only)

Application method	Yield (t/ha)	Protein (%)
Mid-row banded	4.08	7.8 ^a
Mid-row surface	3.75	7.5 ^{ab}
Broadcast granular	3.68	7.7 ^a
Streaming spray	3.84	7.3 ^b

N Decisions Yes / No / Wait Sorry?


Criteria for making N decisions


- Is N short?
- Can you get it / afford it?
- Timing crop
- Timing weather
- Seasonal forecast.

It's not all about N ... Balance Nutrition

- Bool Lagoon
- Canola 2016
- 3.4 t/ha
- GRDC DAV00141
- Penny Riffkin, Amanda Pearce Malcom McCaskill

Summary points

- Silk purses cannot be made from sow's ears.
- N, S, B and maybe K may be deeper into the profile and access to these may be delayed or reduced.
- Set N supply to meet yield potential make water and radiation the limiting factor – not nutrition
- Still a long way to go though so make N decisions in the light of that yield potential.
- Rate is more important than timing and source.
- It's not all about N keep an eye on S, Cu and Zn. Tissue tests good and problem areas.
- Keep in contact Twitter **y** @IPNIANZ
 - http://extensionaus.com.au/crop-nutrition/

Thanks for your attention.....

http://anz.ipni.net

BHP Billiton

Compass Minerals Plant Nutrition International Raw Materials LTD

Company

Simplot

Sinofert Holdings Limited Uralchem, JSC

