

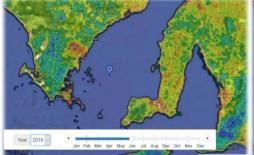
Nutrition issues – 2017

Variable conditions from 2016 – implications Where to now with N Next year for P?

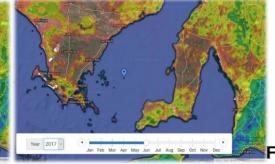
Rob Norton, IPNI Regional Director 😏 @IPNIANZ

Cummins, South Australia, Friday August 11, 2017

With thanks to Bill Long, Mark Stanley, Andy Bates, Mick Faulkner


Better Crops, Better Environment ... through Science

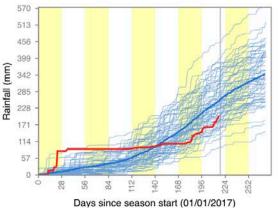
Take homes for 2016


- Where yields were good, off-takes of all nutrients were
 - at least balance P offtake in 2017
- Probably little N in the profile at harvest
 - Summer rains kicked pre-crop mineralisation along
 - Heavy stubbles & likely immobilization of some N
 - N status likely low but test more N at seeding?
- P off-takes significant
 - replacement if soil tests at or near critical.
- 2017 is a new year
 - with a new set of challenges.
 - Remember what happened
 - but don't expect the same.

Zack Zweck @Zweck17 Jul 29

The season....Cummins

Season = Start and then nothing – then rain to make us feel OK



Departure from average on 05 August (for January to September 2017 season) is,

-51mm from Average (-0.7sd)

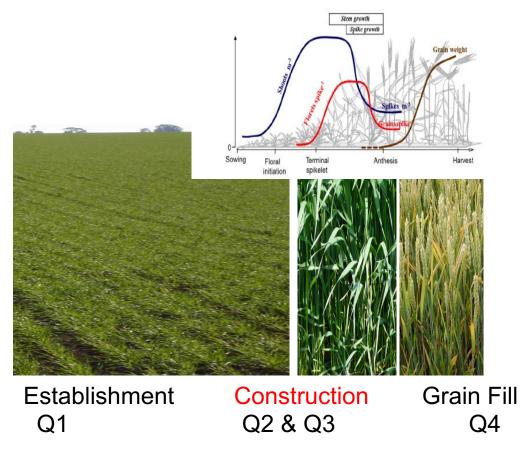
••••• Telstra		30% 🗖
🕻 Tasks	CUMMINS	

Accumulated rainfall for the January to September 2017 season compared to historical events

Soil Water 71% full (122mm)

Chance is "low"

Probability is 33.7% This has occurred approximately 3 out of every 10 years during similar ENSO patterns.



Past skill is "Medium"

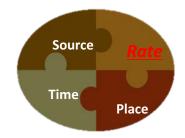
Historically, predictions for this season have been "consistent" 61% of the time and "inconsistent" 39% of the time. (LEPS 7%)

Where we are now...late emergence/sown



N decisions - *again* – dwell on us.

• 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.


• Every year the RIGHT's change - tactical N management

What to know to get an N rate?

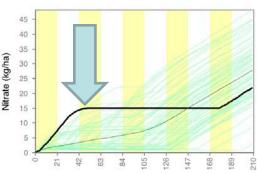
- Known Knowns *maybe*
 - What N is there & is it accessible
 - Soil test / Soil guess (root depth).
 - Rough yield estimate.
- Known Unknowns
 - Soil mineralisation in-crop.
 - Losses of soil & applied N.
 - How much supplied ends up in the grain.
 - Improved yield estimate as season unfolds.
- Unknowns
 - Frost, bugs, late heat.

What do you know?

- Known Knowns should be known
 - What N is there & is it accessible
 - Soil test / Soil guess (root depth).
 - 10-15 kg N @seeding

- Frosi, buys, late neat.

- N from legume residues to the next cereal crop: 25-35%
- N from cereal residues to the next cereal crop:


42 N in Stubb Location Treatment (kg N/ha) (% stubble N) Karoonda Surface 2.1 12 Incorp 3.1 Surface 8.7 Temora 55 Incorp 15.4 Horsham Surface 4.4 32 5.0 Incorp

Gupta, McBeath, Richardson, Kirkegaard, Sanderman (CSIRO unpublished)

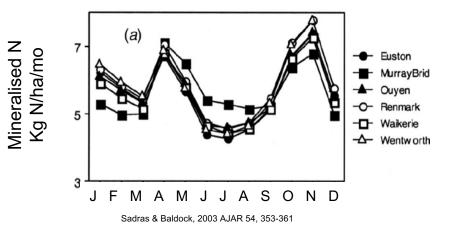
Cut for hay - loose 140 kg N; Harvest for grain - 100 kg N

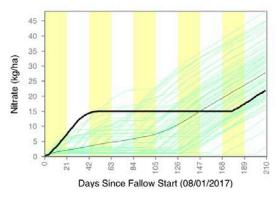
Residue from a 5 t crop

- Burn Loose 30 kg N/ha
- Bale Loose 40 kg N/ha
- Mulch Loose 30 kg N/ha (immobilisation)

Relative fallow nitrate-N accumulation from

January to August 2017 (up until 3 days ago)


Days Since Fallow Start (08/01/2017)


Sources of N

- In-crop mineralisation
 - At seeding 15 kg N/ha
 - To date ~ 10 kg N
 - Maybe 25 kg N to come
 - Spring dependent
 - OC% dependent
- Overall "native" N supply
 - 50 kg N/ha
 - Enough for 1.3 t/ha wheat, 0.6 t/ha canola
- Loss processes operating?
 - Leaching & denitrification & immobilization

Total N ~ 60 kg N/ha Winter ~ 0.1 kg N/ha/d Autumn/Spring ~ 0.2 kg N/ha/d

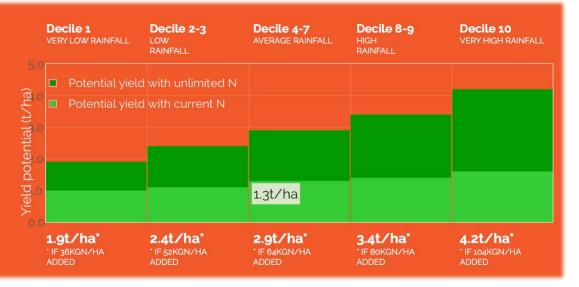
Relative fallow nitrate-N accumulation from January to August 2017 (up until 3 days ago)

N-Rich strips

"The strips give me the confidence 'Not to apply N' when the crop is N sufficient. This has saved me a lot of \$\$\$ over the years."

 Mark Branson, grain grower, South Australia.

N at seeding + mineralisation - denitrification - leaching + 50 kg N


- Potential response to 50 kg N extra
- May not want to *realise* this potential.

What do you know?

- Known Knowns should be known
 - Mineral N supply 50 kg N/ha
 - Yield Potential = demand

Yield prophet, WUE, paddock history, bunions Wheat N demand = Yield * 20 / *Efficiency* 3 * 20 / 0.50 = 120 kg N/ha

Reasonable water under the crop,

Chance is "low"

Probability is 33.7% This has occurred approximately 3 out of every 10 years during similar ENSO patterns.

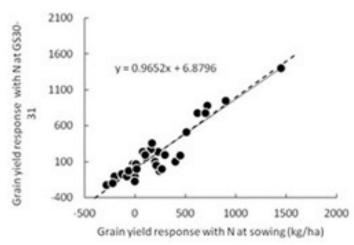
Past skill is "Medium"

Historically, predictions for this season have been "consistent" 61% of the time and "inconsistent" 39% of the time. (LEPS 7%)

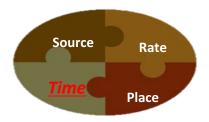
15 kg N ; 30 mm ASW ; 1% OC

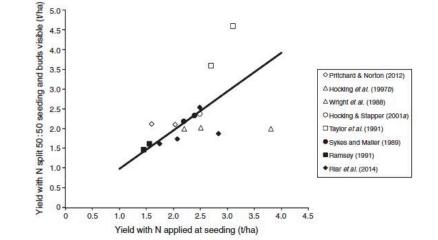
A <u>realistic</u> yield estimate is critical to the path forward

N decisions - *again* – dwell on us.


• 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

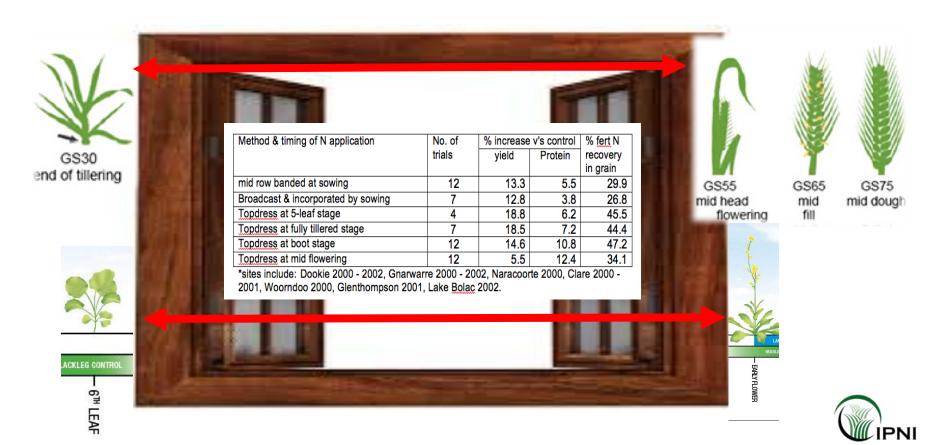
• How late is too late? Crop + Weather + Budget


Penalty to delaying N?

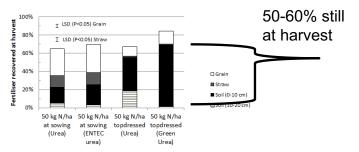


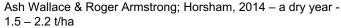
Loss processes operating Leaching Denitrification

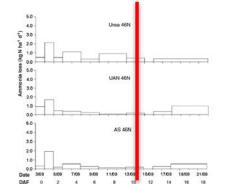
Late rains

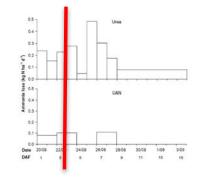


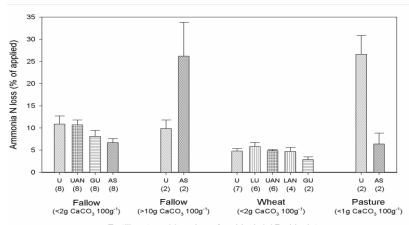
Opportunities

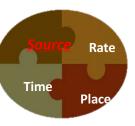

How wide is the application "window"




Timing relative to rain & situation


Turner et al. 2012 (Nutrient Cycling in Agroecosystems, 93, 113-126)


- Wimmera
 - Rain 9 DAF
 - 23% N loss from urea
 - 12% N loss from UAN
 - 12% N loss from AS
- Mallee
 - Rain 2 DAF
 - 6% N loss from urea
 - 3% N loss from UAN



Fertiliser type / (number of paddocks) / Paddock type

N source – foliar, soil or what??

- N is taken up through the leaves
- Limited by either urea toxicity, salt burn or leaf area.

Treatment	Plant N 4 DAA (kg/ha)	Plant N 10 DAA (kg/ha)	Total Plant N at Anthesis (kg/ha)	Yield (t/ha)	Protein (%)
UAN streaming nozzles	23	30	30	1.54	9.6
Urea top dressed	19	26	30	1.69	8.5
UAN inter-row only	19	25	27	1.50	8.7
UAN standard nozzles	22	25	24	1.51	8.6
Liquid Urea	20	31	17	1.26	8.9
LSD (P=0.05)	NS	NS	8.4	NS	0.11

- The amount taken up through leaves is probably 10-15 kg N/ha
- Timing is important
- Worst effect if flag leaf is damaged
- Rest is taken up through roots.

Selection of source maybe more on logistics than just efficiency.

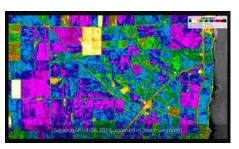
• Ease of handling ; Quantities applied ; Product quality ; Application ; Storage

N is – *again* – the big ticket item.

• 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

- Foliar & soil interaction with source.
 - In-crop mid-row banding

٠



Split germinations and emergence http://anz.ipni.net/article/ANZ-3301

- Rule #1 What is the realistic yield potential
- The need for fertilizer N depends on the yield potential and a 1.5 t/ha wheat crop only requires around 60 kg N/ha.
- May be opportunity to spread on patches but #1 still applies.
- Protect that yield potential and timing of herbicide application also becomes difficult. Deal with N nutrition first though – as N deficient weeds are harder to kill.
- Time herbicide applications to the most common stage, and slightly earlier is probably better than too late. Grass weed escapes, residual herbicides, and #1.

Source

Time

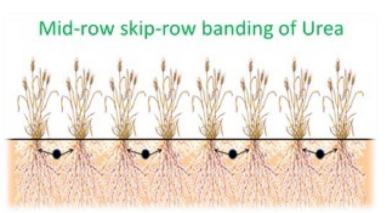
Rate

Application

Mixing compatibility with fluids

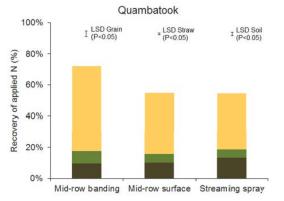
Mid-row banding urea in-season 2016

GRDC


NS RESEARCH &

Ash Wallace, DEDJTR, Hsm

- Comparing:
 - Banding above and below surface
 - Streaming nozzles
 - Conventional nozzles
 - Topdressed granular



Mid-row banding urea in-season 2016

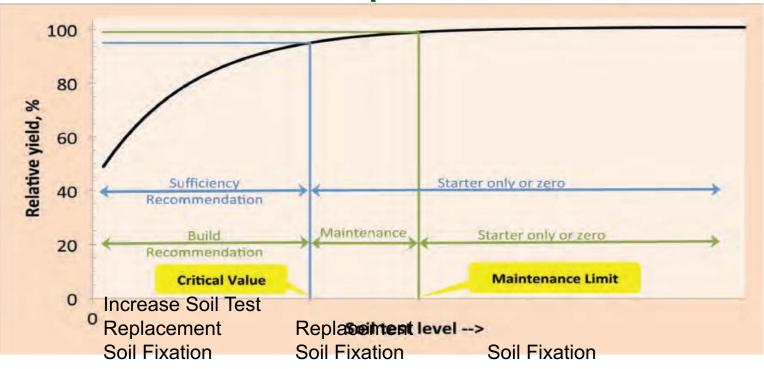
- Protein response to MRB at Quambatook
- Yield (+0.5 t/ha) response at Longerenong
- Responses varied with site, time of application and follow-up conditions.
 - 'Why?' is the key
- Higher plant uptake from mid-row banding (15N studies)
 - 60-75% of fertiliser 'taken up' vs. 40-65
 - Already commercial in Canada (corn) and some local growers

Quambatook (50 kg N/ha only)

Application method	Yield (t/ha)	Protein (%)
Mid-row banded	4.08	7.8 ^a
Mid-row surface	3.75	7.5 ^{ab}
Broadcast granular	3.68	7.7 ^a
Streaming spray	3.84	7.3 ^b

AGRICULTURE VICTORIA

N Decisions Yes / No / Wait Sorry?


Criteria for making N decisions

- Is N short?
- Can you get it / afford it?
- Timing crop
- Timing weather
- Seasonal forecast.

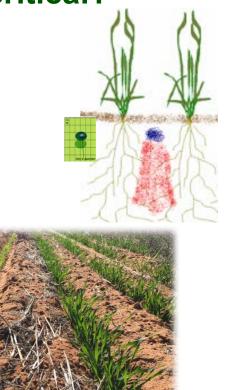
P Management for 2018

.....in response to soil test value.

Supplying enough P

Source Rate Time Place

- How much is replacement?
 - measure or estimate = Yield * Concentration
- How much is the fixation?
 - PBI gives an estimate
 - <150 probably only a kg P or so</p>
- How much does it take to build the soil test?
 - Colwell rises by 0.1 to 0.4 units for each kg P in excess of removal


Crop	kg P/t
Wheat	3.5
Canola	5.1
Chickpea	3.2
Oat Hay	1.6

Why put any on after if soil test values > critical?

- Importance of "fresh P"
 - positional effect of having P adjacent to developing plants.

Р	P Applied in 2007			
Applied in 2006	0	5	10	20
0	2.25	-	-	2.72
10	2.42	2.77	2.67	-
20	2.74	-	2.78	2.88
	LSD (p<0.05) = 0.25			


- Even with high soil test values
 - +0.15 to +0.25 t/ha over all soil test values
- Minimum of 3-5 kg P/ha
 - to supply 2 kg P/ha @ 25 cm rows
 - granules 8-12 cm apart

Summary points

- Set N supply to meet **yield potential** make water and radiation the limiting factor not nutrition.
- Silk purses cannot be made from sow's ears.
- Rate is more important than timing and source.
 - Even application is as important as rate
- If you are on-par at halftime keep an eye on S, Cu and Zn. Tissue tests good and problem areas.
- Replacement P plus PBI
- Keep in contact Twitter 🕑 @IPNIANZ
 - http://extensionaus.com.au/crop-nutrition/

GRDC

Thanks for your attention.....

http://anz.ipni.net

