

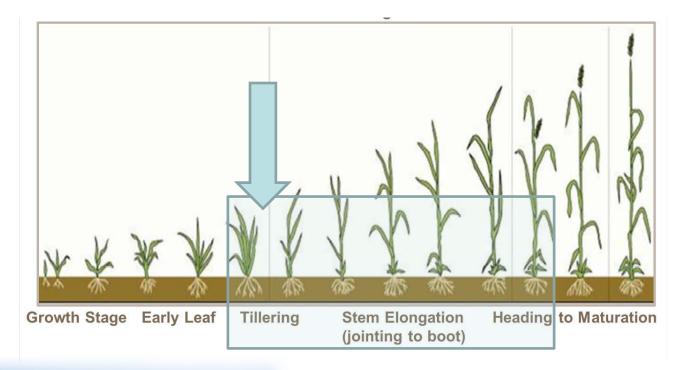
Addressing in-crop nutrition issues - 2017


Rob Norton, IPNI Regional Director

) @IPNIANZ

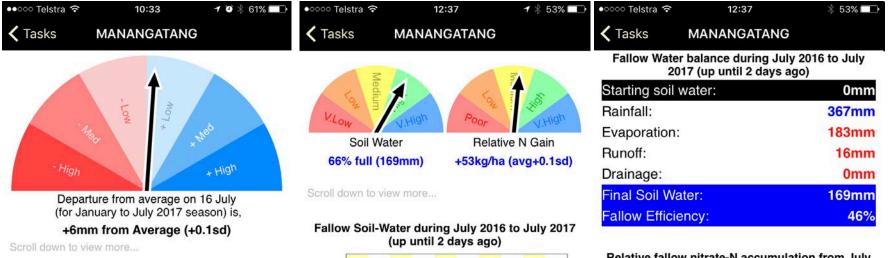
Manangatang, Tuesday July 18, 2017.

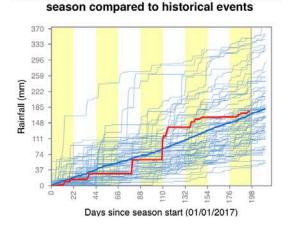
Better Crops, Better Environment ... through Science


What were the signals from 2016?

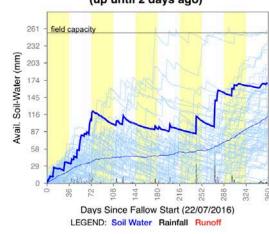
• 2017 – good break with a dry June – finish cropping!

Worry about things you can manage!

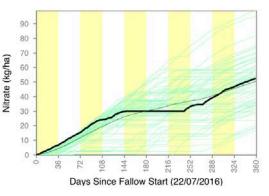

- N, P, K, S, Ca, Mg, B, *Zn*, Mn, Cu, Mo
- Mobile nutrients N, S, B profile distribution
- Immobile nutrients offtake and soil test



Review and revise....



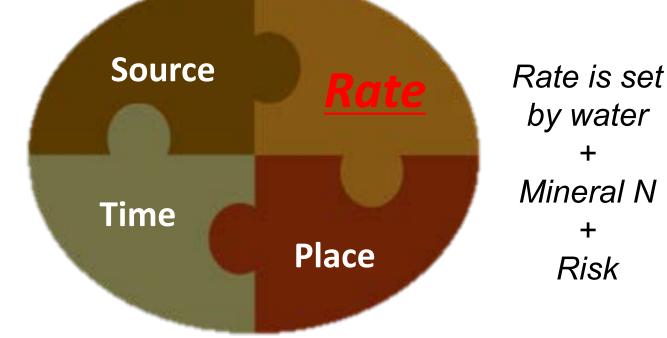
Season = In Victoria about average even after a dry June.



Accumulated rainfall for the January to July 2017

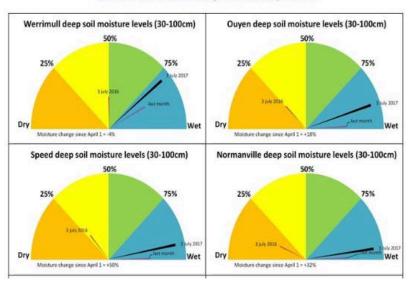
Fallow Water balance during July 2016 to July 2017 (up until 2 days ago)

Relative fallow nitrate-N accumulation from July 2016 to July 2017 (up until 2 days ago)

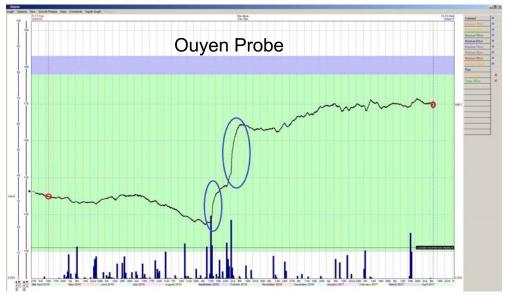


NOTE: This simple estimate of Nitrate accumulation is based on soil organic matter, daily temperature and surface moisture. It is important to consider this estimate as a measure of departure from the long term average (all years). It does not consider previous crops or weeds.

N is – again – the big ticket item.



 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.



Does the crop really need the extra N?

DEDJTR Soil Moisture Speedos 3 July 2017.

http://www.yieldprophet.com.au/yplite/

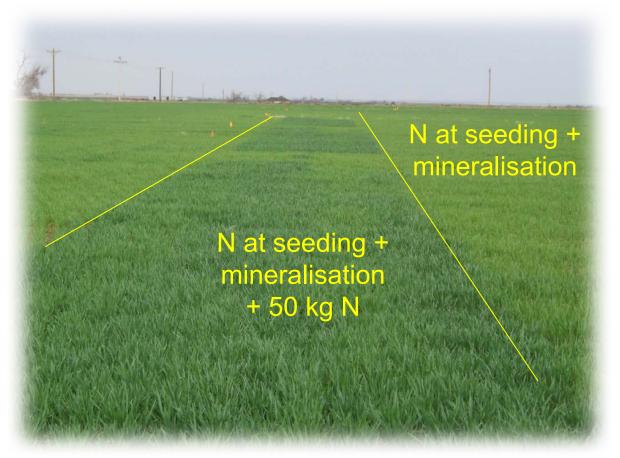
	Decile 1	Decile 2-3	Decile 4-7	Decile 8-9	Decile 10
	VERY LOW	LOW	AVERAGE	HIGH	VERY HIGH
	RAINFALL	RAINFALL	RAINFALL	RAINFALL	RAINFALL
Yield potential (t/ha)			N		
Yiel			1.3t/ha		
	3.4t/ha*	3.9t/ha*	4.9t/ha*	5.9t/ha*	7.3t/ha*
	[•] IF 92KGN/HA	[•] IF 112KGN/HA	[•] IF 144KGN/HA	[•] IF 180KGN/HA	[•] IF 228KGN/HA
	ADDED	ADDED	ADDED	ADDED	ADDED

WUE = 20 kg/ha/mm

50 mm = 1 t/ha

1 t/ha = 40 kg N/ha (50% NUE)

50 kg urea per inch of rain!


Read the crop....

Rest of paddock

N-Rich strip

N-Rich strips

- Potential response to 50 kg N extra
- May not want to realise this potential.

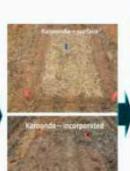
"The strips give me the confidence 'Not to apply N' when the crop is N sufficient. This has saved me a lot of \$\$\$ over the years."

Mark Branson, grain grower, South Australia.

Stubbles and N - from 2016 to now....

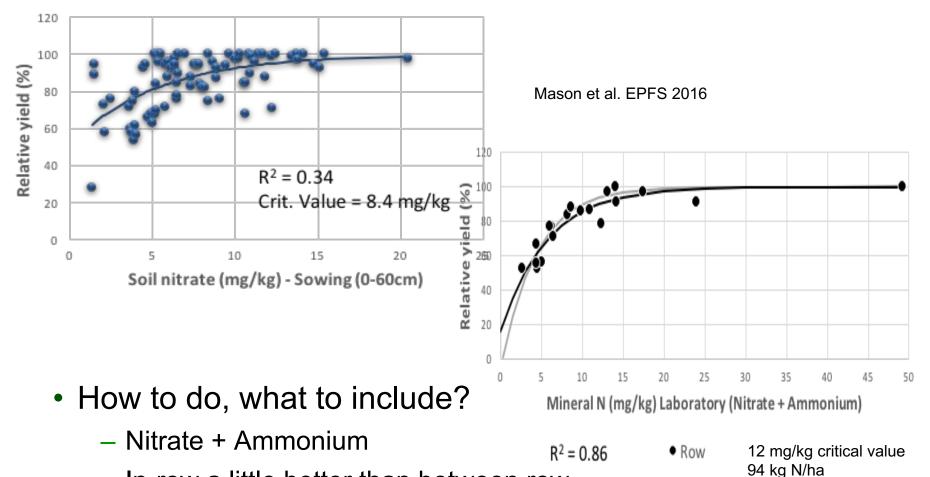
Stubble from a 7 t crop

Burn - Loose 45 kg N/ha


Bale - Loose 55 kg N/ha

Mulch - Loose 42 kg N/ha (immobilisation)

- N from legume residues to the next cereal crop: 25-35%
- N from cereal residues to the next cereal crop:

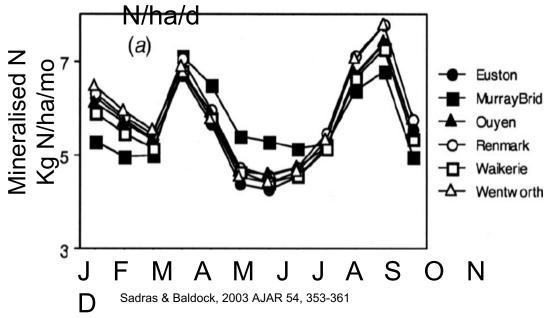


Location	Treatment (N in Stubble (kg N/ha)	N in next crop (% stubble N)
Karoonda	Surface	10	2.1
	Incorp	12	3.1
Temora	Surface	E F	8.7
	Incorp	55	15.4
Horsham	Surface	22	4.4
	Incorp	32	5.0

N labelled wheat stubble

Gupta, McBeath, Richardson, Kirkegaard, Sanderman (CSIRO unpublished)

In-crop mineralisation – important?



- In-row a little better than between row.
- Laboratory best some in-field testing promising.

Mineralisation – the pattern

Total N ~ 60 kg N/ha Winter ~ 0.1 kg N/ha/d Autumn/Spring ~ 0.2 kg

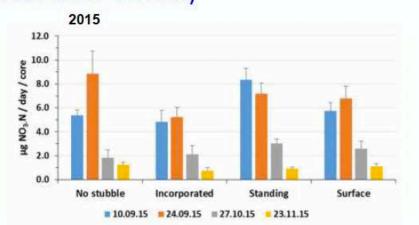
Total Soil N -Temps >5°C SWC <80% (0-10 cm)

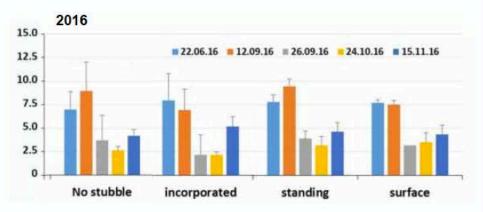
Summer mineralisation

- 0.5 kg N/ha/mm/%OC over summer following legume
- 0.3 kg N/ha/mm/%OC over summer following cereal

"expect" 20-40 kg N/ha to come

For Wimmera/Mallee OC*Seasonal/6 is OK for whole season (r²=0.75 for cereal/legume rotations Dunsford et al. 2015, Agronomy Conference Tasmania)

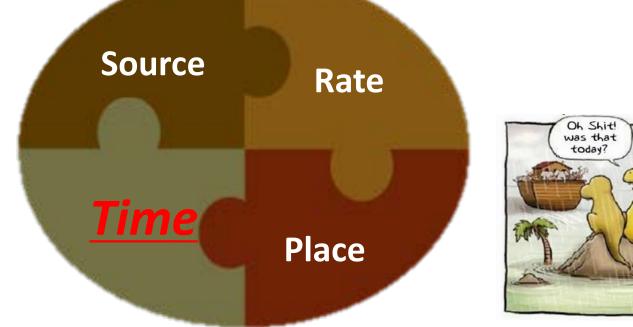

In-situ N mineralization during crop season (Karoonda 2015 & 16) (Wheat after Wheat)



Resin strip in Raison tubes

Page 12

Seasonal conditions effects on microbial turnover major factor

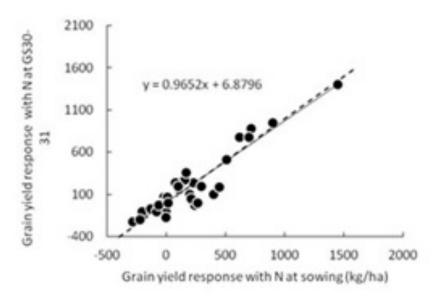

Gupta V.V.S.R. et al. CSIRO Unpublished

N is – again – the big ticket item.

 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

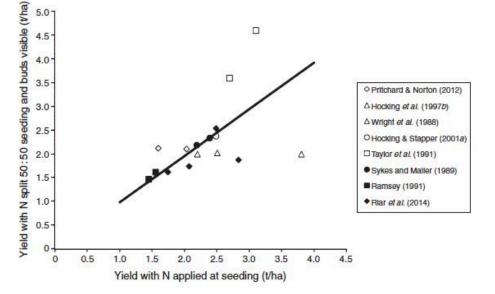
How late is too late? Crop + Weather + Budget

Crop and timing responses to N


Responses						LSD
	Nil N	DC31	DC42	DC65	DC72	p>0.05
Yield (t/ha)	3.31	3.94	3.23	3.29	3.14	0.31
Protein (%)	8.6	9.4	10.4	9.8	8.9	0.4
N recovered (kg N/ha)	50	65	59	57	49	
% Recovery		75%	44%	33%	-4%	

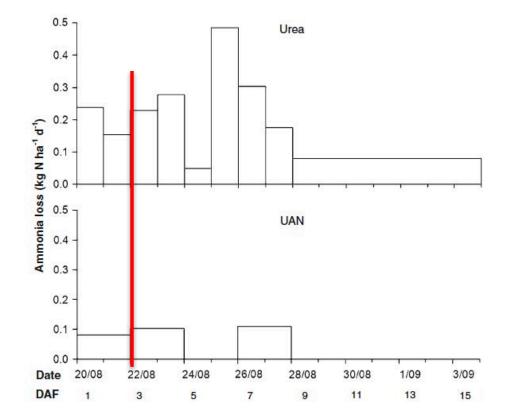
20 kg N/ha applied at various times (Yitpi)

- Rate and timing interact (efficiency)
- Earlier N = Yield
- Later N = Protein


Penalty to delaying N?

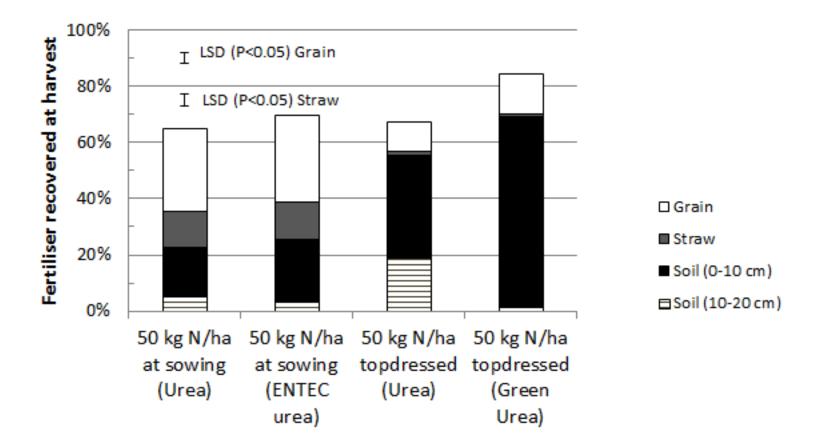
Loss processes operating Leaching Denitrification

Late rains

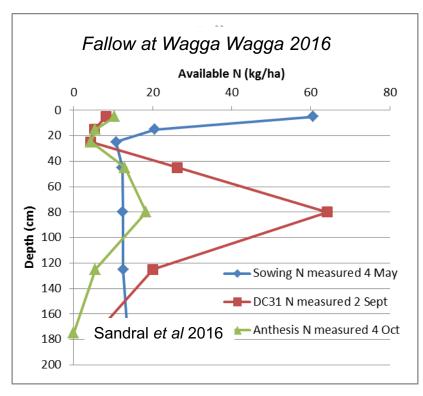


Timing relative to rain & situation

Turner et al. 2012 (Nutrient Cycling in Agroecosystems, 93, 113-126)


- 1 expt in Mallee
 - 5.4% N loss from urea
 - 2% loss from UAN
 - 4 mm rain 2 DAF

What happens if it does not rain at all?

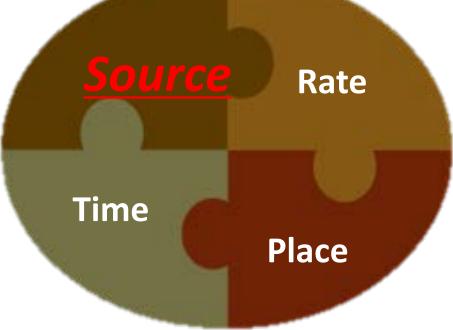


Ash Wallace & Roger Armstrong; Horsham, 2014 – a dry year - 1.5 – 2.2 t/ha Losses in wetter years?

What happens if it gets REAL wet?

- Total loss = 87 kg N/ha over 32 days!
- More ammonium than nitrate unusual!

May 4 th	Sept 2 nd	Oct 4 th
18 NH ₄ +	13 NH ₄ +	30 NH ₄ ⁺
124 NO ₃ -	121 NO ₃ -	25 NO ₃ -
142 Total N	134 Total N	55 Total N



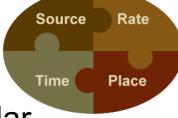
N is – again – the big ticket item.

 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

Is there anything between the different N sources?

N source – foliar, soil or what??

N is taken up through the leaves


• Limited by either urea toxicity, salt burn or leaf area.

- The amount taken up through leaves is probably 10-15 kg N/ha
- Timing is important
- Worst effect if flag leaf is damaged
- Rest is taken up through roots.

Source Comparisons

Little agronomic difference between fluid/granular

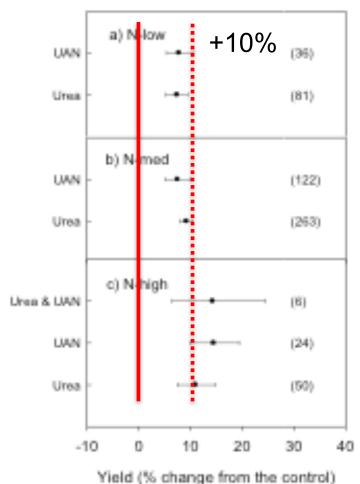
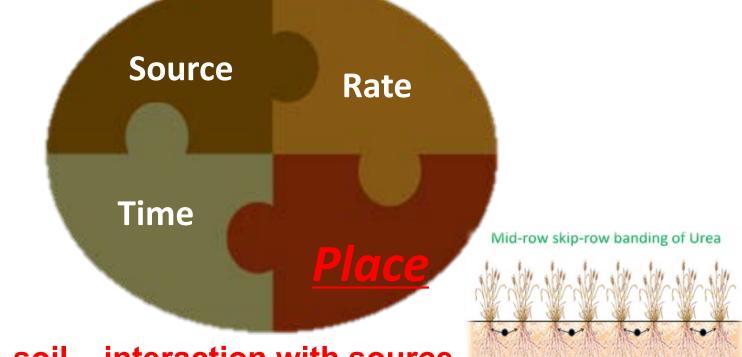


Fig. 1: The effect of different N sources (urea or UAN) on grain yield (a) and N uptake (b).

Selection of source maybe more on logistics than just efficiency.

- Ease of handling
- Quantities applied
- Product quality
- Application
- Carryover


S Cameron, Twitter

N is – again – the big ticket item.

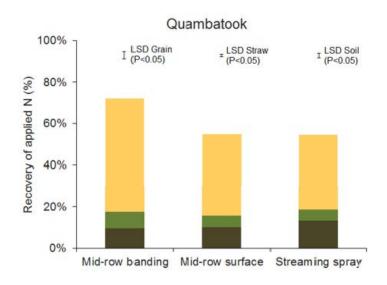
 4R nutrient stewardship – select the RIGHT source, apply it at the RIGHT rate, at the RIGHT time and in the RIGHT place.

- Foliar & soil interaction with source.
 - In-crop mid-row banding

Mid-row banding urea in-season 2016

Ash Wallace, DEDJTR, Horsham

- Comparing:
 - Banding above and below surface
 - Streaming nozzles
 - Conventional nozzles
 - Topdressed granular


Mid-row banding urea in-season 2016

- Protein response to MRB at Quambatook
- Yield (+0.5 t/ha) response at Longerenong
- Responses varied with site, time of application and follow-up conditions.
 - 'Why?' is the key
- Higher plant uptake from mid-row banding (15N studies)
 - 60-75% of fertiliser 'taken up' vs. 40-65%
 - Already commercial in Canada (corn) and some local growers

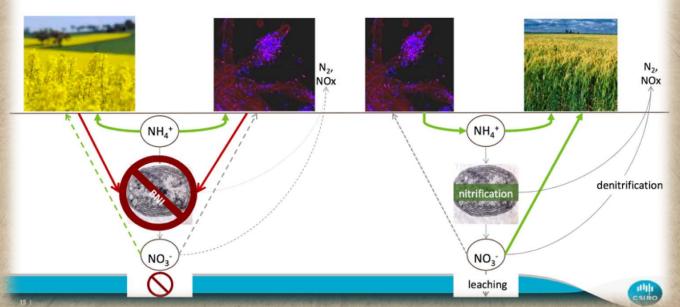
Quambatook (50 kg N/ha only)

Yield (t/ha)	Protein (%)
4.08	7.8 ^a
3.75	7.5 ^{ab}
3.68	7.7 ^a
3.84	7.3 ^b
	4.08 3.75 3.68

Accu-Spread®

Mixing compatibility with fluids

So what's going on here......2015


Lodging, small grain in patches

Year 1 - canola rotation

- Haying off in the areas adjacent to the tracks
- Poor spreader patterns excess N near the tracks.

Year 2 – wheat rotation

Worse in the canola –higher N status

Rhizosphere nitrification inhibition by canola roots. *Catherine O'Sullivan et al. 2016*

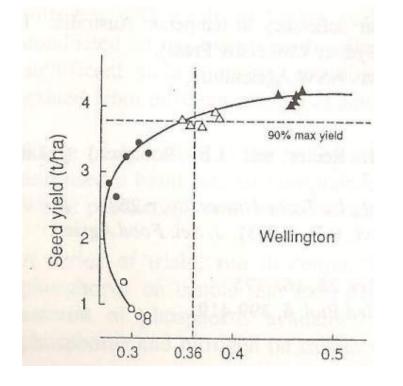
Yes / No / Wait Sorry?

Criteria for making N decisions

- Is N short?
- Can you get it / afford it?
- Timing crop
- Timing weather
- Seasonal forecast.

It's not all about N though!!!

Poor – 0.1% S Good – 0.2% S History of low S in wheat in 2015. Matt Witney



S deficiency symptoms

Tissue Tests for Diagnosing S deficiency

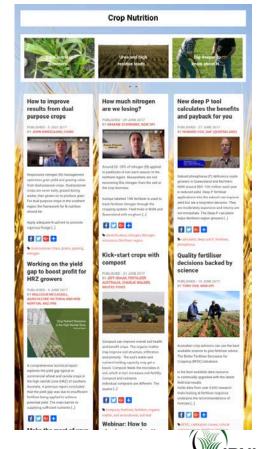
• eg Canola - 0.36% S in whole shoots at start of flowering

Pinkerton A. PJ Hocking, A Good, J Sykes,s RBD Lefroy, GJ Blair. (1993) A preliminary assessment of plant analysis for diagnosing S deficiency in canola. Proceedings of 9th Australian Research Assembly on Brassicas, Wagga Wagga, p21-28.

Wheat	YEB Critical	Cotton	YML %S
FS 4-5	0.28%	Flow'ing	<0.2%
FS 5-6	0.32%		

Critical S values lower in N deficient plants Reuter & Robinson 1997

- •Highly dependant on GS/tissue.
- Need rapid tests
- Root penetration when sampled
 Grain analyses for retrospective diagnosis


	Cu	Fe	Mn	Zn	В	Мо
pH > 7.0				· /	**	++
рН < 5.5	++	+++	+++	+		
water-logged soil	+		+	+		
drought				-		
high humus content		++	++	++	++	-
high P-content	-		-		- 1	+++
sand				\ /		-
compaction	+	++	+	\ + /	+	+

Summary points

- Silk purses cannot be made from sow's ears.
- N, S, B and maybe K may be deeper into the profile and access to these may be delayed or reduced.
- Set N supply to meet yield potential which looks reasonable given that subsoil moisture levels are good. Still a long way to go though so make N decisions in the light of that yield potential.
- Getting the right nutrient source at the right rate, right time and right place is the basis of good nutrient management.
- It's not all about N keep an eye on S and Zn especially in the Mallee. Tissue tests problems.
- Keep in contact Twitter y @IPNIANZ
 - <u>http://extensionaus.com.au/crop-nutrition/</u>

GRDC

GRAINS RESEARC & DEVELOPMENT