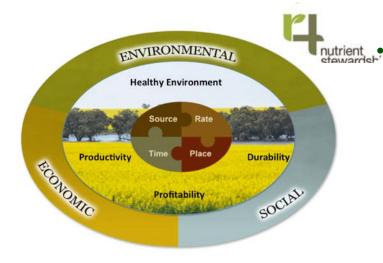


Impacts of a wet season on crop nutrition

Rob Norton, IPNI Regional Director


Tuesday 7th February, Adelaide 1100/1400; Tuesday 14th February, Wagga Wagga, 1100/1440; Tuesday 21st February, Bendigo, 1100/1400; Thursday 23rd February, Rupanyup, 1130.

Better Crops, Better Environment ... through Science

Observations from 2016 – and before

2015 was different to 2016 and 2017 will be different from 2016

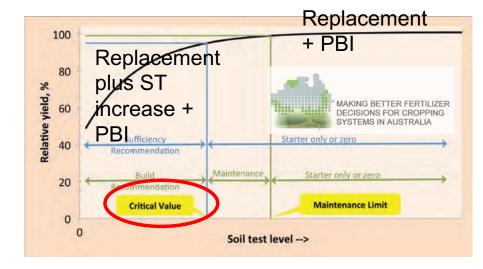
- Nobody really knows what the season will bring
 - Forecasting is an art, not a science.

nutrient • A good nutrition program will be

- Planned not reactive
- Flexible in response to the season
- Nimble quick to respond and timely
- Rational have a budget and review those \$.
- Based on matching source, rate, time and place

Going out the gate.....

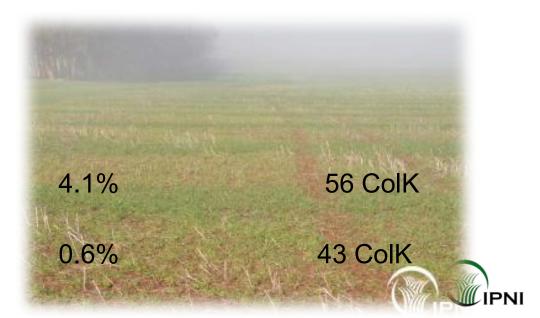
- Good yields
- Higher than average *removals*
- Actual removals?


	N (kg/ha)	P (kg/ha)	K (kg/ha)	S (kg/ha)
Wheat (6 t/ha,12% ptn)	125	18	21	7
Canola (3 t/ha, 23% ptn)	90	15	20	15
Barley (5 t/ha, 10% ptn)	90	15	23	6
Stubble* baled (7.5 t/ha)	56	6	109	9
Stubble* burned (7.5 t/ha)	46	3	44	6

^{*} Wheat stubble

Replacement strategies

- You get nothing for nothing
- Particularly P Maintaining soil test values and soil organic matter requires replacement
- PLUS the soil demand (eg PBI) plus losses.
- Replacement largely depends on where the soil test value sits.
 - DRAWDOWN TENDS TO BE FASTER
 THAN BUILD UP
- · Grain testing to complement soil testing

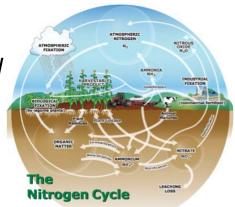

Nutrient	Trigger Value
N	<1.6% (9% Ptn)
Р	<0.2%
S	<0.2%
Cu	<2 mg/kg
Zn	<20 mg/kg

Taking this forward to 2017.....

- Soil test using the right test
- Consider balancing P removal from 2016 <u>at least</u>.
- Consider K on lighter, acid soils, check prior windrows

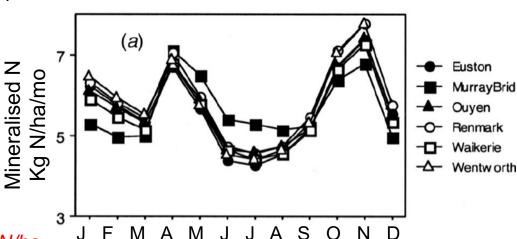
Some observations from the field

- 7.3 t/ha La Trobe barley crop
 12.5% protein
- Applied N = 120 kg/ha
- Presowing N = 50 kg/ha
- Removal = 160 kg N/ha (7.3*20)
- GRAIN NUE = 160/170 = 94%
- Expect N demand ~ 300 kg N/ha



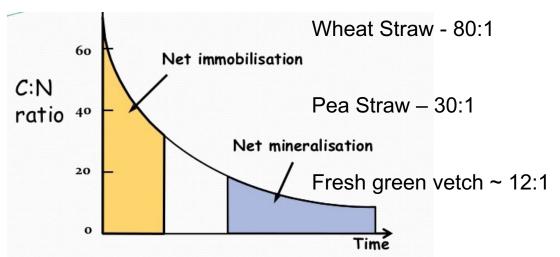
High NUE values seen – really?

- So where did the N come from?
- Grain Removal = 160 kg N/ha (7.3*20)
- Stubble = 70 kg N/ha (10*7)
 - 230 kg N "recovered"
- Applied N = 120 kg/ha very high efficiency
- Presowing N = 50 kg/ha maybe deeper N supplied
 - 170 kg N "supplied" 120 kg to be found
- Mineralisation is this enough to close "the gap" and account for the losses likely to occur?



Drivers of Nitrification – moves ammonium to nitrate

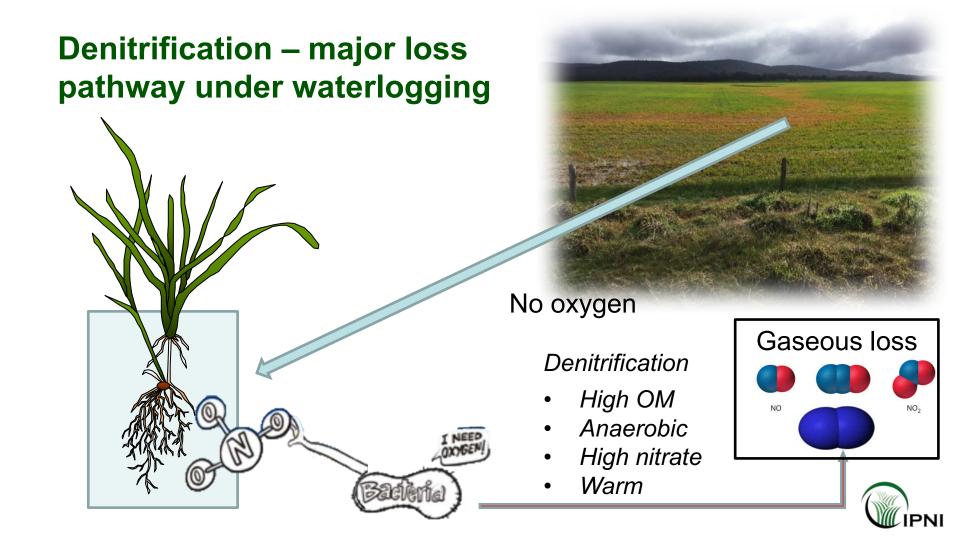
- Nitrification
 - Temperature rapid between 15 and 25°C
 - Water <60 to 80% water filled pore space
 - Actually oxygen limits
- Nitrification continues where
 - Early break
 - Warm winters
 - Extended spring
- If "normal" is 50 kg N/ha
 - 2016 may have delivered 15-30 kg N
 - Total mineralised reasonably 100 kg N/ha
 - At the expense of Organic Matter!


Total N ~ 60 kg N/ha
Winter ~ 0.1 kg N/ha/d
Autumn/Spring ~ 0.2 kg N/ha/d

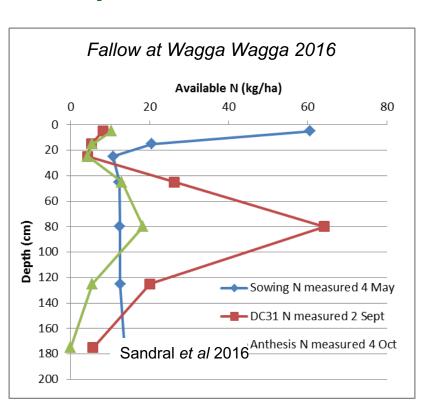
Mineralised N Importance of C:N ratio of organic matter

 The amount of N mineralized or immobilized depends on the quality and quantity of the organic matter

 Baldock tool – indicates 7 kg N demanded/t of cereal yield (HI, C:N ratio, % decomposed)


Taking this forward to 2017.....

High stubble loads from 2016 crops


6 t/ha wheat yield ~ 8 t/ha stubble ~ 0.5% N?

- To get 8 t/ha of 80:1 to 30:1 C:N
 - -Immobilize 50-70 kg N/ha
 - -Will get it back later
- · LOWER THAN "NORMAL" N AT SEEDING

Impacts of a wet season on crop nutrition

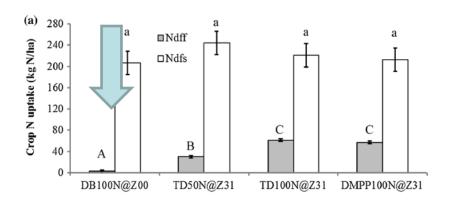
May 4 th	Sept 2 nd	Oct 4 th
18 NH ₄ ⁺	13 NH ₄ ⁺	30 NH ₄ ⁺
124 NO ₃ -	121 NO ₃ -	25 NO ₃ -
142 Total N	134 Total N	55 Total N

- Total loss = 87 kg N/ha over 32 days!
- More ammonium than nitrate unusual!

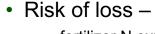
Taking this forward to 2017.....

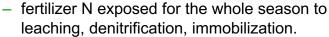
- Paddocks are likely to be highly variable in N status in particular
- Probably lower than normal
 - Denitrifcation in wetter parts
 - -High removal in drier parts
- Soil N testing (and S)
 - Consider sampling by zones
- Consider an N-Rich Strip

N-Rich strips


"The strips give me the confidence 'Not to apply N' when the crop is N sufficient. This has saved me a lot of \$\$\$\$ over the years." - Mark Branson,

grain grower, South Australia.





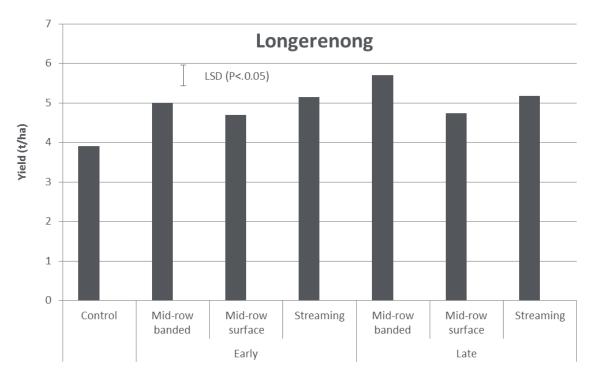
So..... Look for early N supply?

- DB = Deep banded @ sowing
 - no N from the fertilizer –
 - 15N study indicated most N denitrified
- TD = Topdressed, two rates/products
 - ~ 60 kg recovered from the fertilizer.
 - 2/3rd in grain, 1/3rd in straw.
 - No effect of DMPP

- Risk of over application
 - Haying off yes even in a wet year.
- Uncertainty of demand
 - At seeding is when least is known about the season
 - Splitting to match seasonal yield estimates
- In-furrow damage at high rates
 - Machine, crop, soil type, product.

Harris et al. 2016. Hamilton Site – 227 kg N/ha 0-20 cm May/June – Very wet > 70% WFPS

Mid-row banding urea in-season 2016


Ash Wallace, DEDJTR, Horsham

- Comparing:
 - Banding above and below surface
 - Streaming nozzles
 - Conventional nozzles
 - Topdressed granular

Mid-row banding urea in-season 2016

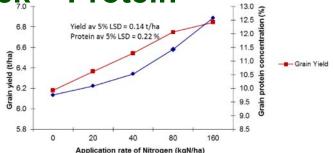
- Protein response to MRB at Quambatook
- Responses varied with site, time of application and follow-up conditions
 - 'Why?' is the key
- Initial indications of higher plant uptake from mid-row banding (15N studies)
 - 60-75% of fertiliser
 'taken up' vs. 40-65%

The 2016 push for protein – late N

Favourable post-anthesis

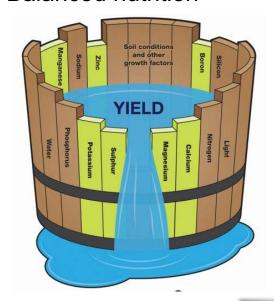
Long cool finish (generally)

Does low protein mean missed yield?


- Maybe.
- Maybe not.
- Experience from 2016 says luck played a big role.

Right Timing + Right Rate + Right Luck = Protein

- Does the crop need more N? Rate
- Can the N get into the crop? Source
- What will the N stimulate? (yield/protein) Time
- Can enough N get into the crop/grain? Rate * Source
 - − 5 t/ha wheat increase 1% ptn with a 50% efficiency of N use (high) is 20 kg N.
- The finish is critical duration of starch deposition <u>Luck</u>
- Will the extra protein be worth anything?
- Most important point
 - Protein deposition and starch deposition are largely independent
 - Rate and duration of deposition important for both.


Take this forward to 2017.....

- Certainly look for protein, but yield is king.
- Balance early and later N supplies, N budget & risk.
- With low N status, N at seeding/early may be more important
 -50 kg N to get to stem elongation.
- Yes you can hay-off a crop even with a good finish
- Take care with seed/fertilizer placement if not dual chutes.

It's not all about N

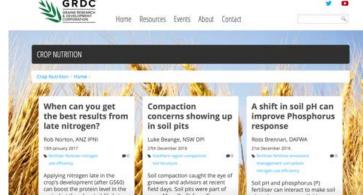
Balanced nutrition

Ian Ludwig

100 80 Relative yield (%) ■ 100N 60 ■ 60N 40 **30N** 20 Αll Nil No P No K No S No Zn/Cu

Bool Lagoon Nutrient Omission Experiment

GRDC, DAV00141
Penny Riffkin, Malcolm McCaskill,
Amanda Pearce



Summary...soil test to know where you are!

- 2017 is a new year With a new set of challenges.
 - Remember what happened but don't expect the same.
- Off-takes of all nutrients were high (including pulses)
 - at least balance P offtake in 2017
- Mobile nutrients (N & S & B) likely leached deeper sampling
- N status likely low but test more N at seeding?
- Not everything is explainable....but most things are.
 - Get your information from reputable sources
 - Use extension hub

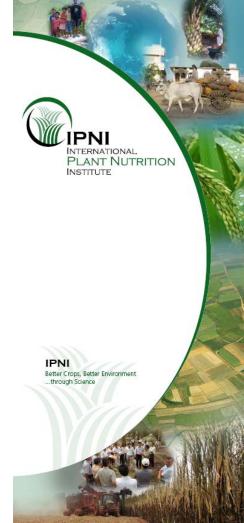
"The important thing is not to stop questioning."

A. Einstein

Thanks for your attention.....

BHP Billiton

Company


Fertilizer Canada

http://anz.ipni.net

GRDC

REGIONAL CROPPING SOLUTIONS NETWORK

