
Australian Government

Department of Agriculture, Fisheries and Forestry

Department of Victoria Primary Industries

MELBOURNE

Development Corporatio

Elevated Carbon Dioxide and Wheat Nutrition - Lessons From The Australian Grains Free Air Carbon **Dioxide Enrichment Experiments**

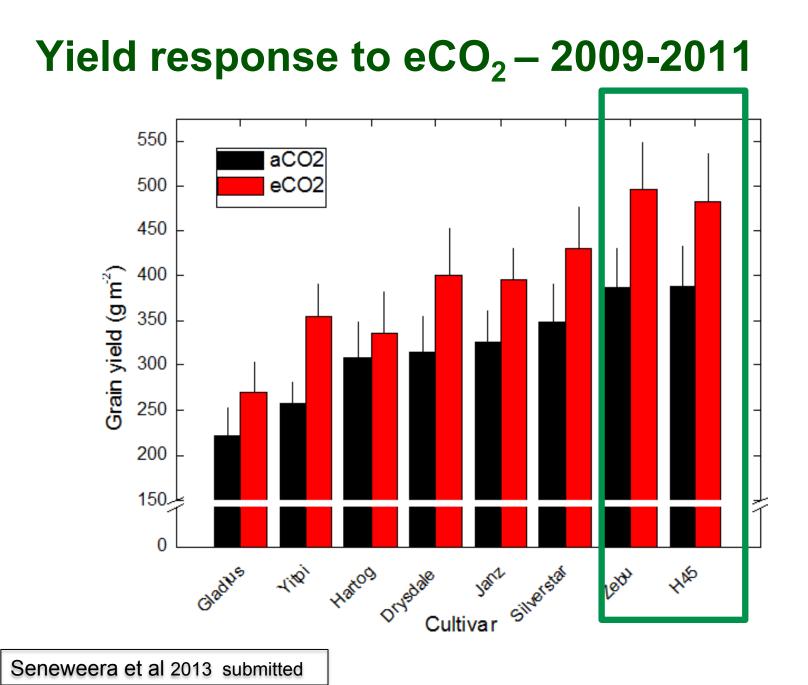
R.M. Norton

Regional Director, Australia & New Zealand.

S.K. Lam, S. Seneweera, N. Fernando, R. Armstrong, S. Tausz-Posch, M. Tausz, G. Fitzgerald, D. Chen.

Australian Grains Free Air Carbon Dioxide **Enrichment Facility (AGFACE)**

- Located at Horsham in southeastern Australia 36°S.
- Aim to answer the fundamental question of how the supply of N and water interact with higher temperatures under elevated CO_2 in relatively low yield potential situations ie 1 to 4 t/ha


Temperature Experimental treatments FACE CO_2 – ambient (~380 ppm) 550 ppm 12 10 14 10 12 10 12 Mean -Water – rainfed & irrigated (+50 mm) Sowing time – early sown (June 18) & late sown (August 22) – generates Seast Wate Supply Rain + 0 +5°C during flowering Supplements) Nitrogen - low and supplemented -4 replicates; Each ring 12 m managed in response to water supply 16 m in 2009 et seq (Yitpi only) Spread over 5 ha site Cultivar - Yitpi and Janz **Experimental Treatments – 2007, 2008, 2009**

400

Mean effects of eCO ₂ 2007-2009			(a) Grain overall low N high N C ₃ non–legume legume C₄		(108) (75) (33) (77) (29) (2)
Factor	[CO ₂] (µmol/mol)	2007	-20 -10 0	10 20 30 40 50 60 ect of elevated [CO ₂] (%) 2009	
Grain yield (g m ⁻²) +27	380+	258	247	252	
	<mark>%</mark> 550	323	310	332	
Grain N -59 content (%)	6 380+	2.44	3.16	3.06	
	550	2.33	3.04	2.81	
N removal g m ⁻²	380+	6.30	7.81	7.71	
	550	7.53	9.42	9.33	

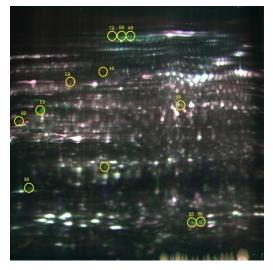
+20% N removal under eCO₂

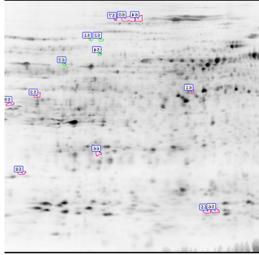
Changes in protein quality with eCO₂

• Change in grain N:S ratio (Fernando et al., 2012)

cv Yitpi		Grain N (g/kg)	Grain S (g/kg)	N:S
2008	aCO ₂	26.8	1.75	15.1
	eCO ₂	23.5	1.66 ns	14.5
2009	aCO ₂	27.2	1.83	14.9
	eCO ₂	23.7	1.65	14.4 ns

- Increase in flour yield (aCO₂ 69.5% v eCO₂ 72.3%) (Fernanado et al, 2013 JCS)
- Decrease in estimated bread volume* (aCO₂ 169cm³ v eCO₂ 157 cm³) (Fernanado et al, 2013 JCS)
- EBV is estimated from mixograph data.

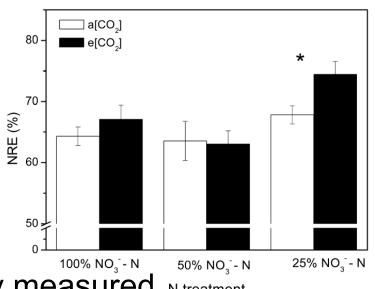



Grain proteome response to eCO₂

Green = > 1.5 Fold Up-regulated in Control (4 spots) Pink = > 1.5 Fold Down-regulated in Control (10 spots)

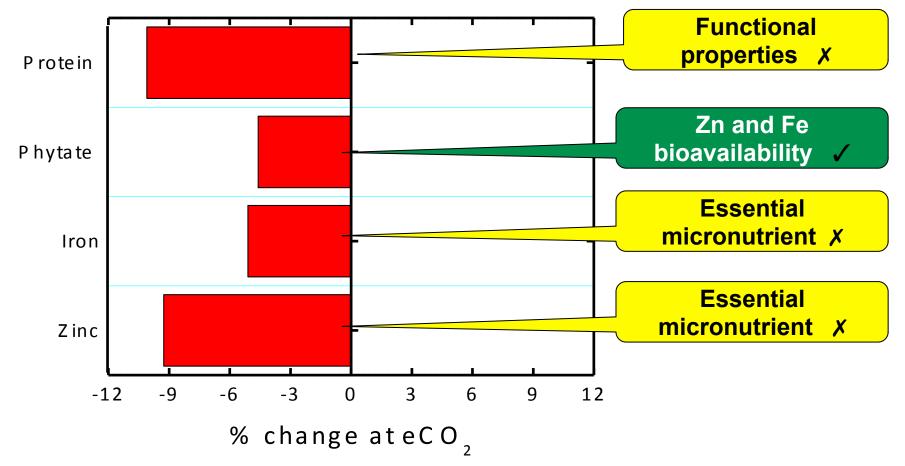
Spot		Protein	Fold	
ID	Protein Name	coverage	change	
(i). Up-	(i). Up-regulated proteins			
61	Serpin-Z1C	29%	>1.7	
	1-Cys peroxiredoxin			
66	PER1	42%	>1.5	
63	Not identified		>1.5	
(ii). Down-regulated proteins				
64	HMW Glutenin, subunit	5%	>1.5	
60	HMW Glutenin, subunit	5%	>1.5	
57	HMW Glutenin, subunit	5%	>1.6	

The gluten protein concentration was significantly reduced (more than 20%) at elevated CO₂.



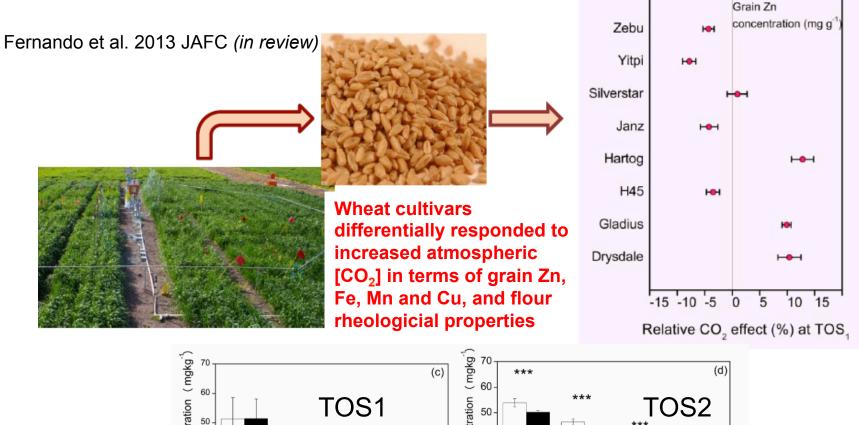
DIGE for MALDI-TOF Mass Spectrometry

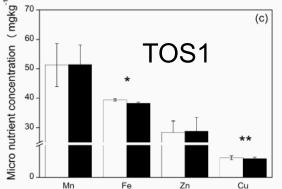
Grain N recovery and N source

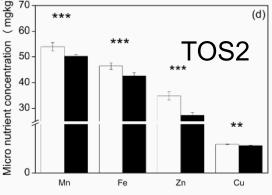

- Glasshouse experiment
- aCO₂ v eCO₂
- Variation in NO₃:NH₄ supply
- Pulse labeled with ¹⁵N at anthesis
- N recovery efficiency, NR activity measured N treatment
- If N>50% NH₄, higher N recovery under eCO₂
- Under ammonium dominant supply, significant response in N recovery
- Competition for energy between photo-reduction & nitrate reduction.

Fernando et al. JCS

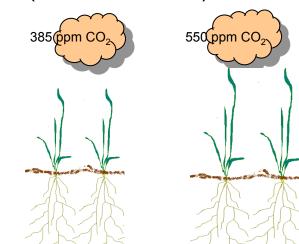
submitted


Three years FACE data – from 2 sites – only two varieties.




No effect of eCO₂ on Vitamin E (tocopherols) (Posch et al, 2012)

Effect on eCO₂ on micronutrient concentration – intraspecific variation



Meeting the higher N demand

- Higher RLD at anthesis under eCO₂
- +27% C input, -6% N input
- Higher C:N ratio in residues increase N demand for C sequestration

Year	aCO ₂	eCO ₂
2007	1.14	1.82
2008	2.45	3.00
2009	0.86	0.96

- No difference in N recovery from fertilizer. (Lam et al. 2012)
- No difference in mineralisation.
- Potential for Progressive N Limitation (Luo et al. 2004.)

Effect of eCO₂ on pulses/legumes

(Lam et al. 2012, CPS)

- Glasshouse experiments +/-P; aCO_2 , $eCO_2 3$ species
- Legumes responded to eCO_2 if P was supplied.
- No differences in %Ndfa due to [CO₂]
- N fixed increased due to growth stimulation
- Net negative N balance in pulses irrespective....
- So adequate P is important in reducing the N deficit

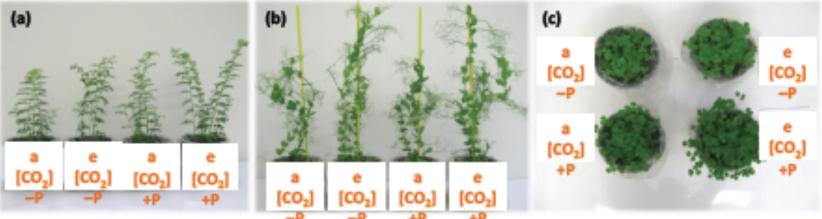


Fig. 1 Chickpea (a), field pea (b) and barrel medic (c) grown under different [CO₃] (a: ambient; e: elevated) and P inputs on Vertosol

Lessons

- Growth and yield responds positively to rising CO₂, with little interaction with temperature and water supply.
- Grain protein content and functional properties are adversely affected – intraspecific variations and alternative N management strategies may provide hope.
- Grain micronutrient content declines, not necessarily all as yield dilution intraspecific responses of interest.
- N demand will increase potential for progressive N limitation.
- P supply for pulses/legumes will determine N limitation.
- Revise N management strategies source/rate/time

Lam et al. 2012 Global Change Biology. Meta-analysis

Acknowledgements

AGFACE Team: University of Melbourne: M Tausz, N Fernando, L Thilakarathne, S Posch, M Nicolas, S Barlow, R Lam, H Sultana, P Howie, S Seneweera.

Victorian State Department of Primary Industries (DPI): G Fitzgerald, G O'Leary, R Armstrong, J Brand, M Mollah, P Trebicki, J Luck, C Walker, J Panozzo, W Griffiths, N Mathers, J Nuttall, J Ellis, J Ellifson, M Munns, R Argall

Collaborators: R Norton (IPNI), S Myers (Harvard Medical School), J Stangoulis (Flinders University), A Makino, (Tohoku University), J Conroy (University of Western Sydney), A. Mosier. E. Lin, X Han (CAAS)

Funding:

Australian Commonwealth Department of Agriculture, Fisheries and Forestry.

Grains Research and Development Corporation.

Victorian Department of Primary Industries.

The University of Melbourne.

International Plant Nutrition Institute.

http://www.piccc.org.au/AGFACE

Better Environment