

Crop N & P demand under Climate Change

Rob Norton

Regional Director, Australia & New Zealand.

acknowledgements to:

S.K. Lam, S. Seneweera, N. Fernando, R. Armstrong, S. Tausz-Posch,

M. Tausz, G. Fitzgerald, D. Chen

INTERNATIONAL

INSTITUTE

PLANT NUTRITION

ANZFIC, Coolum Beach, Queensland, October 2013.

Outline

Climate change and crop responses

- Impact on plant demand
- Impact on soil supply
- Reviewing the 4Rs for future management.
- Overlay of
 - Increased demand for food
 - Need for higher resource use efficiency
 - Resource pricing and demand
 - Changing soil nutrient status
 - Government policy

Global CO₂ emissions and projections

Carbon dioxide + nitrous oxide + methane = GHG

CO₂ drives plant growth & yield (C3 plants)

- Photosynthesis takes in carbon dioxide, gives out oxygen.
- Transpiration to get CO₂, the plant has to open its leaf pores which lets out water.
- So higher CO₂ = better

NO PROBLEM

Fig. 8 Comparative responses to elevated [CO₂] of different functional groups and experimental conditions on growth and yield variables. Results from: ○, this meta-analysis; ■, a meta-analysis of tree species (Curtis & Wang, 1998); ▲, a meta-analysis of C₄ grasses (Wand *et al.*, 1999). ▼, comparative results from a meta-analysis of 79 crop and wild species (Jablonski *et al.*, 2002). Number of species, FACE experiments and individual observations for each response are given in Appendix 2.

Impacts of increased CO_2 from other experiments

 Ainsworth & Long 2005 New Phytologist

Projected climate – 2050 - A1B -Australia

Elevated CO₂ improves photosynthesis and plant water use efficiency, but, high temperature and lower rain fall have a negative impact on crop growth and productivity in most parts of Australia.

Australian Grains Free Air Carbon Dioxide Enrichment Facility (AGFACE)

- Located at Horsham in southeastern Australia 36°S.
- Aim to answer the fundamental question of how the supply of N and water interact with higher temperatures under elevated CO₂ in relatively low yield potential situations ie 1 to 4 t/ha

Mean effects of eCO₂ 2007-2009

Implication – N demand

- Source Rate
 Time Place
- 20% increase in N demand irrespective of temperature and rainfall changes
 - REVIEW THE RIGHT RATE
- Most increase is after stem elongation (temperature).
 - REVIEW THE RIGHT TIME/RATE MORE LATER?
- The <u>protein content</u> decline occurs with bigger yield stimulation – changes in N metabolism
 - Down-regulation of photosynthetic proteins
 - Lower protein/N content in leaves
 - Less N for remobilization to grain.
 - LATE FOLIAR N (HIGH EFFICIENCY)
 - NEW MORE INTERNALLY N-EFFICIENT
 WHEAT TYPES, NON-DOWNREGULATING

Yield response to eCO₂ – 2009-2011

Grain N recovery and N source

- Source Rate
 Time Place
- If N>50% NH₄, higher N recovery under eCO₂
- Under ammonium dominant supply, significant response in N recovery
 - SHIFT TO AMMONIUM BASED N-SOURCES
 - ENHANCE AMMONIUM ACCESS (eg DMPP)

Fernando et al. JCS submitted

Changes in protein quality with eCO₂

Change in grain N:S ratio (Fernando et al., 2012)

cv Yitpi		Grain N (g/kg)	Grain S (g/kg)	N:S
2008	aCO_2	26.8	1.75	15.1
	eCO_2	23.5	1.66 ns	14.5
2009	aCO_2	27.2	1.83	14.9
	eCO_2	23.7	1.65	14.4 ns

- Increase in flour yield (aCO₂ 69.5% v eCO₂ 72.3%)
 (Fernanado et al, 2013 JCS)
- Decrease in estimated bread volume* (aCO₂ 169cm³ v eCO₂ 157 cm³) (Fernanado et al, 2013 JCS)
- · EBV is estimated from mixograph data.

Grain proteome response to eCO₂

Green = > 1.5 Fold Up-regulated in Control (4 spots)
Pink = > 1.5 Fold Down-regulated in Control (10 spots)

Spot		Protein	Fold		
ID	Protein Name	coverage	change		
(i). Up-regulated proteins					
61	Serpin-Z1C	29%	>1.7		
	1-Cys peroxiredoxin				
66	PER1	42%	>1.5		
63	Not identified		>1.5		
(ii). Down-regulated proteins					
64	HMW Glutenin, subunit	5%	>1.5		
60	HMW Glutenin, subunit	5%	>1.5		
57	HMW Glutenin, subunit	5%	>1.6		

The gluten protein concentration was significantly reduced (more than 20%) at elevated CO₂.

DIGE for MALDI-TOF
Mass Spectrometry

Effect on eCO₂ on micronutrient concentration – intraspecific variation

Three years FACE data – from 2 sites – grain quality.

Effect of eCO₂ on pulses/legumes

(Lam et al. 2012, CPS)

- Glasshouse experiments +/-P; aCO₂, eCO₂ 3 species
- Legumes responded to eCO₂ if P was supplied.
- No differences in %Ndfa due to [CO₂]
- N fixed increased due to growth stimulation
- Net negative N balance in pulses irrespective....
- Adequate P is important reducing the N deficit.

Conclusions about eCO₂ and nutrition

Supply capacity

- No increased efficiency of accessing N from fertilizer
- More roots at a higher density access more soil N
- Higher OM input but same C:N ratio
- May lead to N immobilization likely that N limitation will occur

Potential for input

- Fertilizer N rate/source/time
- P supply at least maintained to ensure
 N input from legumes.

Summary.....

- Higher yields will demand higher input of ALL nutrients.
- Grain quality is adversely affected intraspecific differences and alternative rate, source and timing strategies may provide hope.
- Grain micronutrient content declines may be addressed if protein does not decline.
- N demand will increase potential for progressive N limitation – higher N rates.
- P supply for pulses/legumes will determine the severity of N limitation.

Acknowledgements

AGFACE Team:

University of Melbourne:

M Tausz, N Fernando, L Thilakarathne, S Posch, M Nicolas, S Barlow, R Lam, H Sultana, P Howie, S Seneweera.

Victorian State Department of Primary Industries (DPI):

G Fitzgerald, G O'Leary, R Armstrong, J Brand, M Mollah, P Trebicki, J Luck, C Walker, J Panozzo, W Griffiths, N Mathers, J Nuttall, J Ellis, J Ellifson, M Munns, R Argall

Collaborators:

R Norton (IPNI), S Myers (Harvard Medical School), J Stangoulis (Flinders University), A Makino, (Tohoku University), J Conroy (University of Western Sydney), A. Mosier. E. Lin, X Han (CAAS)

Funding:

Australian Commonwealth Department of Agriculture, Fisheries and Forestry.

Grains Research and Development Corporation.

Victorian Department of Primary Industries.

The University of Melbourne.

International Plant Nutrition Institute.

http://www.piccc.org.au/AGFACE

