

Dahlen Long Term Fertilizer Experiment

Rob Norton, Regional Direction, Australia and New Zealand

Taylors Lake, September 2011

Long term trial site – established 1996

- Four rates of P (TSP)
 - -0, 9, 18, 36
- Five rates of N (Urea)
 - -0, 20, 40, 80, 160
 - No N in legume phase
- N applied either
 - All at sowing/split 50:50
- Each year the site sown to a single crop.
- Soil samples, grain harvest, nutrient content.

Direct drilled, zero cultivation, stubble retained.

Why have a long term experiment?

- Use to document trends in yield and quality over time.
- Follow the build up or depletion of nutrients in soil.

Broadbalk, Rothamstead, 1843

Crops Grown

- Barley -1996, 2000, 2004, 2008
- Chickpea -1997, 2009
- Lentil 2001, 2005
- Canola -1998, 2002, 2006, 2010
- Wheat 1999, 2003, 2007
- 2011 in fodder oats (weed control)

2010 Canola

- Good year for responses
 - -0 N 0 P = 1.38 t/ha
 - -80 N 18 P = 3.45 t/ha
- Relatively small N response
 - Poor Barley 2008
 - Poor Chickpea 2009
 - Still fixed N
 - Some small benefit to splitting N

Graph 1

Graph 3

Mean yields 1996 to 2010 (t/ha)

Not the greatest set of years!!!

2 complete fails (both canola)

Main effects 1996 to 2010

Year	1996	' 97	'98	' 99	'00	' 01	' 03	'04	' 05	' 07	'08	' 09	' 10
Crop Site Mean Yield	Barl	Cpea	Cano	Whea	Barl	Lent	Whea	Barl	Lent	Whea	Barl	Cpea	Cano
(t/ha)	3.26	1.62	1.32	1.84	3.05	0.90	3.69	1.00	1.03	2.25	1.10	0.51	2.54
N	***	***	***	***	***	***	***	***	ns	**	***	***	***
P	***	***	***	***	***	***	***	***	***	**	ns	***	***
T	***	ns	ns	ns	ns	ns	ns	ns	**	ns	ns	ns	*
N*P	***	ns	***	ns	***	***	***	***	ns	ns	***	ns	ns

- 12/13 sign N response
- 12/13 sign P response
- 6/13 sign Timing response
- 7/13 sign N*P interaction

How to evaluate these experiments

- Yields?
- Profitability
 - Annual v Long term
- Efficiency Many ways to do this
 - Partial Factor Productivity Yield divided by Fertilizer applied
 - (If interested in straight production how to get the most)
 - Agronomic Efficiency Yield increase divided b fertilizer applied
 - If interested in efficiency of use of fertilizer
 - Partial Nutrient Balance kg nutrient removed per kg fertilizer applied
 - If interested in the efficiency of nutrient use
- Nutrient Balance over time

Across all years – mean of treatments

Year by Year best treatment (\$/ha)

Year	Crop	\$/ha	N	Р
1998	Barley	952	160	36
1997	Chickpea	504	20	18
1998	Canola	534	80	9
1999	Wheat	250	20	9
2000	Barley	573	80	18
2001	Lentil	286	0	9
2003	Wheat	668	20	9
2004	Barley	48	20	18
2005	Lentil	267	160	9
2007	Wheat	329	20	9
2008	Barley	116	20	9
2009	Chickpea	1	40	0
2010	Canola	1319	40	18

Average Best Treatment – 15 crops

- Based on gross margins
 - Yields as harvested
 - Costs
 - Wheat \$183 /ha
 - Barley \$171/ha
 - Pulse \$273 /ha
 - Canola \$222/ha
 - Prices
 - Wheat \$220/t
 - Barley \$200/t
 - Pulse \$400/t
 - Canola \$500/t
 - Urea \$460/t
 - TSP \$430/t

Profitability \$/ha/y

Torreadility \$\psi \text{Training}								
N	0	9	18	36				
0	118	202	196	159				
20	120	244	246	160				
40	141	229	243	199				
80	89	235	254	170				
160	25	141	145	101				

Agronomic Efficiency

When 9 or 18 kg P

- First 20 kg N gets an extra16 kg grain per kg N
- More N gives more but not a lot more – diminishing returns!

• At 9 kg P

- Some N gives about 50 kg
 grain per kg P
- Additional P does not give a higher grain return

Nitrogen AE

(kg increase in yield per kg fertilizer applied)

N	0	9	18	36
0				
20	5.0	16.0	17.1	5.8
40	4.0	8.0	10.7	9.2
80	2.0	6.0	7.8	5.0
160	1.4	2.1	2.6	2.2

Phosphorus AE

(kg increase in yield per kg fertilizer applied)

N	0	9	18	36
0		31.1	17.7	9.5
20		49.1	27.6	9.8
40		36.7	24.9	11.8
80		57.2	36.5	14.4
160		40.3	25.4	12.1

What about nutrient balance?

 Around 5 kg P removed if no P applied

 9 kg P has about 3 kg P more P applied than removed

 18 kg P has 11 kg P more applied than removed

• 36 kg P has 30 kg P more _{-5.0} applied than removed.

N had little impact on P removal

<u>Phosphorus</u> Fertilizer applied - Grain removal

Effects on soil P levels (top 10 cm only)

- Long term P strategy:
 - Site started at 20 mg/kg Colwell P
 - (PBI = 115 (low) Critical P = 35 mg/kg
 - Now

```
• 0 P = 17 \text{ mg/kg} total P = 250 \text{ kg/ha} = responsive}
```


Dahlen IPL Trial Long Term P –

Availability and extractability of soil P pools

So what do we conclude

- In the long term annual application of 9 kg/ha P
 - has kept the soil test near critical
 - Is about in P balance of input and output
- Relatively poor years
- Top soil P only
- Does not show the whole P story
- BUT
 - MESSAGE IS THAT IF YOUR SOIL TEST VALUES ARE AT OR NEAR CRITICAL, REPLACEMENT P IS A GOOD STRATEGY.

What about Nitrogen

- Similar story to P
- Includes legume N contribution about 75 kg N/ha/legume crop
- Nil N is drawing down on the soil reserves.
- 20 to 40 N is about equal to N removal

 More than 40 N applied means that more N is applied than removed.

What happens to the excess N?

- 1996 organic C level 1.14%, TSN = 0.096
- Top 10 cm 2011 pre-sowing
 - N alone had no significant effect on OC (p=0.114)
 - TSN did show significant (p=0.015) increases with N
 - Difficult to compare 1996 with 2011 (bulk density).

P also increased the OC level!

- The increase in Total Soil N was due to P stimulating legumes and therefore N fixation.
- N fixation study on lentils in 2005

P Rate	Biomass	Yield	Nfixed kg/ha	kg/t
0	3.06	0.60	37.6	13
9	4.39	1.13	53.6	11
18	5.08	1.20	65.5	12
36	4.76	1.06	72.3	13
LSD	0.52	0.12	10.2	ns

P	TSN%	%OC
0	0.108	1.089
9	0.116	1.249
18	0.124	1.330
36	0.125	1.290
se	0.003	0.027

Splitting N – what did that show?

- Only two years
 when splitting was
 significantly
 different from an at sowing N
 application
- Averaged across all N treatments
- But no interaction
- Splitting is a risk management strategy.

		At Sowing	Split	р
Barley	1996	3.47	2.99	Sign
Chickpea	1997	*	*	
Canola	1998	1.34	1.30	ns
Wheat	1999	1.88	1.80	ns
Barley	2000	3.08	3.02	ns
Lentils	2001	*	*	
Wheat	2002	0.00	0.00	ns
Wheat	2003	2.68	2.69	ns
Barley	2004	1.00	0.99	ns
Lentil	2005	*	*	
Canola	2006	0.00	0.00	ns
Wheat	2007	2.18	2.26	ns
Barley	2008	1.10	1.10	ns
Chickpea	2009	*	*	
Canola	2010	2.45	2.63	0.05

So what worked out best?

- 20:9 or 40:9
 - About the most profitable
 - About in nutrient balance of input and output
 - Soil tests kept at about the same level
 - BUT
 - Relatively poor string of years
 - In better years more P and N pay off
 - BUT
 - Need to set the P status with at-sowing maybe up P rate to meet higher demand in better years – monitor with soil tests.
 - Match N supply to season with moderate N at sowing, little penalty with splitting.

Effect of N & P on Ndfa

- 2005 site in lentil
- N had no effect:
- P affected growth & yield

P Rate	Biomass	Yield	Score	Nodule Wt	%Ndfa	%N	Nfixed kg/ha	kg/t
0	3.06	0.60	1.1	0.023	80	1.7	37.6	13
9	4.39	1.13	2.3	0.057	68	1.7	53.6	11
18	5.08	1.20	2.3	0.064	67	1.8	65.5	12
36	4.76	1.06	2.4	0.060	64	2.0	72.3	13
LSD	0.52	0.12	0.4	0.010	ns	ns	10.2	ns

- Affected nodulation,
- not %N derived from atmosphere (fixed)

Critical P value

- A critical soil test value is based on achieving 95% of maximum yield at that value.
- Olsen P = 15 mg/kg but poor predictability
- Colwell P = value depends on soil type – better predictor of response than Olsen
- Better fertilizer decisions for crops

Nutrient

Nutrients are the limiting factor

Colwell P and PBI

- A critical P test value depends on soil chemistry – P buffering capacity
- PBI is a measure of how much applied
 P is transfered to the low availability pools
- Scale 0 to 1000
- Dahlen = 115
- Critical Colwell = 35 mg/kg

The relationship between critical Colwell P value and soil P buffering index. The critical Colwell P value is the soil test value predicted to produce 95% of maximum pasture yield.

РВ	Critical Range	
<15	Extremely Low	20-24
15-30	Very very low	24-27
36-70	Very low	27-31
71-140	Low	31-36
141-280	Moderate	36-44
281-840	High	44-64

N & P interaction – as per model system?

- Wheat Phases analysed.
- In two of three years N*P interaction
- Nature is that @0P = little N response
- Also see that timing of N had no significant effect.

Three-Way ANOVAR P values – Grain Yield t/ha

	1999	2003	2007
Site Yield	1.84	3.69	2.25
N	0.000	0.000	0.017
Р	0.011	0.000	0.003
Timing	0.131	0.437	0.178
N*P	0.079	0.000	0.201
N*Time	0.289	0.781	0.290
P*Tm	0.763	0.302	0.366
N*P*Tm	0.464	0.913	0.599

What set strategy was best?

	0N	20N	40N	80N	160N	mean
0P	241	244	265	218	188	231
9P	311	391	347	317	281	329
18P	294	353	327	339	262	315
36P	247	283	337	291	219	275
Mean	273	318	320	291	238	

• 9P

• 20N

Nitrogen	0N	20N	40N	80N	160N	mean
0P	-8	3	15	42	96	30
9P	-7	4	13	41	97	30
18P	-9	1	14	41	97	29
36P	-9	0	13	38	98	28
mean	-8	2	14	41	97	

Phosphorus	0N	20N	40N	80N	160N	mean
0P	-4	-4	-4	-4	-5	-4
9P	5	4	4	4	4	4
18P	13	13	13	13	13	13
36P	32	31	30	31	31	31
mean	11	11	11	11	11	

Long term effect on Colwell P

- Interaction between N & P @ high N, Colwell P is less than at lower N – less P offtake @ lower N??
- N did not increase OC, +P took OC from 0.93±0.02 to 1.01±0.02
- N decreased soil pHCaCl2 from 7.3±0.1 to 6.9±0.1
- Both N and P increased soil S levels.

Long Term Colwell P

- Starting Colwell = 24 mg/kg
- Interaction between N & P @ high N, Colwell P is less than at lower N – less P offtake @ lower N??

P balance and soil test changes

- Rotation in P balance will be at about 32 Colwell
- Colwell P rises 0.2 mg/kg for each kg P over balance

