

Sulfur and zinc nutrition in Australia

Better Crops, Better Environment ... through Science

Dealer Meetings, Toowoomba, Wagga, Bendigo, Adelaide, October 2012.

Importance of S

- Component of essential amino acid in animal nutrition
- Key component in protein structure disulphide bonding
- Present in several organic compounds ... odours to garlic, mustard and onion, health compounds in Brassica spp.
- Part of a balanced nutrition package = Crop yields!!!!!

Why S and why now?

- Increased crop yields creating a higher S off-take.
- Use of high analysis fertilizers containing little incidental S
- Less use of high S fuels so less S from atmosphere.
- Slower organic matter turnover with conservation tillage
- Fewer S-containing pesticides

Kirkby et al. (2011) 16 C:S 70:1 Sulfur cycling in the soil 12 Australian soils $R^2 = 0.97$ **Fertilisers** Fotal soil C (%) SO₄²- Rain/Irr nternational $R^2 = 0.76$ 0.05 0.10 0.15 0.20 Total soil S (%) Removal 2% OC 0.03% OS Mineralised / Fixed SO₄2leaching Oxidised

So what makes S nutrition tricky?

- Sulfate is highly mobile on the soil
 - Similar to nitrate
- Inorganic sulfate is exchanged with organic matter.
 - Similar to nitrate
- N and S can be co-limited so one can affect the other.
- S fertilization can induce deficiencies of
 - Molybdenum, selenium competition for uptake sites
 - Boron mechanism uncertain
- S fertilization can increase the uptake of
 - Copper, manganese probably through acidification in root zone.

So – again – why sulfur & why now here?

- Declining soil organic matter levels
- Change to AP fertilizers

Fertilizer	% S	kt / year	kt S /y	% Change*
SOA	24	291	70	+2%
SSP	11	636	70	-37%
MAP	1.5	715	11	+2%
DAP	1.6	410	7	-25%
TSP	1.0	47	5	-50%
SOP/BentS			40	-43%
Total S			201	-43%

New high S demanding industries – esp. Canola.

S removal in crops & livestock products

- Milk 0.4 g S/L 4.4 kg/ha (Gourley et al. 2012)
- Wool 22 g S/kg g @ 5 kg/hd*5 sheep/ha = 0.5 kg/ha
- Live cattle 0.4 gS/kg LW @ 400 kg*1 /ha = 0.16 kg/ha
- Canola 5.0 kg S/t 2 t/ha = 10 kg S/ha
- Wheat 1.4 kg S/t 3 t/ha = 4 kg S/ha
- Cotton 1 kg S/bale 10 b/ha = 10 kg S (Cotton CRC)

Sulfur removal by state (2002-2009)

Notional farm gate S balance

- S inputs from current fertilizers Most superphosphate applied to pastures. DAP/MAP used for grain
- Notionally Australia is in positive S balance
- Not included in this balance

- Added S from mined/by-product gypsum (4 Mt mined)
- Atmospheric input 4.5 ± 2.1 kg S/ha/y (NLWA 2001)
- S input from irrigation depends on watershed position

Soil S levels - ANRA Audit 2001

2010 Soil S test values (top 10 cm) for Victoria, South Australia, New South Wales (~1200 tests)

- Nationally
- 11% < 5 mg/kg
- Queensland
- 2% < 5 mg/kg
- New South Wales
- 25% < 5 mg/kg
- South Australia
- 20% <5 mg/kg
- Victoria

3% < 5 mg/kg

Seen first in the golden canola era.

Deficiencies first seen in NSW at Lockhart.

- Soils naturally low in S.
- Declining soil OM levels
- Picture shows an S trial in central NSW
- Variation in flower colour pale flowers

S deficiency in wheat

Response to S

Rate of S	Canola Yield (t/ha) after:		
fertilizer (kg/ha)	Cereal	Pasture	
0	2.63	3.25	
10	2.74	4.12	
20	2.82	4.38	
40	2.91	4.53	
LSD	0.24	4	

Importance of balanced nutrition

- S is only one part of a balanced nutrition package
- Benefits to the crop come when all nutritional limitations are met.
- Co-limitation studies
 - -N:P-7:1 (Duivenbooden et al, 1996)
 - -N:S-15:1 (Randell et al, 1981)

Wheat grain N:S ratio

Randell et al. (1981) AJAR 32, 203-212

SE Australian N/S 2009 n=140 (2*70)

Importance of balanced nutrition (Northern grains)

- Sorghum @ Bendee south of Emerald
- 20% to P or K
- No individual S reponse
- 38% with P and S
- Data of M Bell QAAFI

Principles for Fertilizer Management

- Right Product@Right Rate,
 Right Time, Right Place™ system
- 4 R's approach as a summary

The concept was further developed by IPNI scientists (Bruulsema et al. 2008)

Series in Crops & Soils 2009

The Right Rate - Soil test

PLANTS

Plant
uptake, via
the soil
SO₄² pool, of
Sireleased at

Crop	Deficient	Marginal	Adequate
Pasture	<5	5-10	>10
Canola	<12	12-18	>18
Wheat	<3	3-5	>5

Standard tests 0-10 cm KCI-40 S 0-10 cm MCP S

Better Fertiliser Decisions for Crops –

Canola calibration curve

80% Relative Yield: 5.9 (4.6 - 7.5) 90% Relative Yield: 7.1 (5.8 - 8.8) 95% Relative Yield: 8.1 (6.6 - 9.9)

Correlation R: 0.35 Range soil test values: 3.0 - 30.0

Slope RY(50-80): 7.7 (-15.0 - 30.0)

>1 t/ha

Better Fertiliser Decisions for Crops –

Wheat calibration curve (account for deeper S)

subsoil 5 KCl40 extractable at or below 10.0 mg/kg
 subsoil 5 KCl40 extractable above 10.0 mg/kg
 no subsoil value — best fit at or below 10.0 mg/kg

Soil test calibration:

80% Relative Yield: 4.5 (1.5 - 14.0)

90% Relative Yield: 5.8 (2.6 - 13.0)

95% Relative Yield: 6.9 (3.6 - 13.0)

Correlation R: 0.23

Range soil test values: 4.0 - 23.0 Slope RY(50-80): poorly defined

Problem with leaching & deep S

- sulfate mobile
- Improved tests;
 - Appropriate depth
 - Take account of some part of the other S sources
 - Organic S esp.

- DGT - S

Sulphur distribution down the profile for some New South Wales soil sites (Blair et al., 1997).

Establishing an appropriate S rate

- Assess the soil supply deep soil test
- Set to balance S removal in product
 - Similar to N budget but fewer losses.
 - Wheat 0 -10 kg S/ha
 - Canola 0 20 kg S/ha
- Consider both N and S (and all others)
 - Cereals 6-8 kg S/ 100 kg N
 - Canola 12-15 kg S/ 100 kg N
 - Cotton 10-12 kg S/ 100 kg N

Right place & right time

- Where the plant can get it
 - Root zone control release rates to avoid leaching
 - Available sulfate in the root zone
- In synchrony with plant demand most crops show good ability to recover from nutrient stress – eg Canola

S applied Kg/ha	Sowing	5-6 Leaf	Buds Visible	Stem Elongati on	
10	1.73	1.62	1.56	1.41	LSD
40	2.15	2.26	2.11	2.19	0.43

Tissue Tests for Diagnosing S deficiency

eg Canola - 0.36% S in whole shoots at start of flowering

Pinkerton A. PJ Hocking, A Good, J Sykes,s RBD Lefroy, GJ Blair. (1993) A preliminary assessment of plant analysis for diagnosing S deficiency in canola. Proceedings of 9th Australian Research Assembly on Brassicas, Wagga Wagga, p21-28.

Wheat	YEB Critical	Cotton	YML %S
FS 4-5	0.28%	Flow'ing	<0.2%
FS 5-6	0.32%		

Critical S values lower in N deficient plants Reuter & Robinson 1997

- Highly dependant on GS/tissue.
- Need rapid tests
- Root penetration when sampled
- Grain analyses for retrospective diagnosis

Right product

Product	N	Р	K	S
Superphosphate		8.8		11
MAP	10.0	21.9		1.5
DAP	18.0	20.0		1.6
MAP S ⁰ /SO ₄	12.0	17.6		5 +5
Triple Superphosphate		20.7		1.0
Ammonium sulfate	20.2			24
sulfur Bentonite				90
sulfate of Potash			41	18
Gypsum (CaSO ₄ .2H ₂ O)				14-16%
Kieserite (MgSO ₄ .2H ₂ O)				22%
Langbeinite $(K_2Mg_2(SO_4)_3)$			17	21

Range of S coats – MAP/DAP/Urea +S⁰,

S product considerations

- High nutrient densities
- Deliver sulfate into the root zone
 - Care with fertilizer damage light/dry soils/wide rows.
 - Acidification can help with availability of other nutrients (eg P)
- Controlled release of sulfate with time leaching.
- Co-placement of nutrients can be important (eg P & S, Frisen) S⁰ oxidation rapid with fine particles
 - Good for sulfate release
 - Bad for handling
- New processes that incorporate S⁰ into existing products at manufacture

Particle	2 weeks	4 weeks	Supply
Size µ	weeks	weeks	in:
<75	80	82	weeks
175-400	15	36	months
840-2000	2	5	years
2000-4000	1	2	

Mixtures of sulfate and elemental S

 Alter S:SO₄ ratio, even distribution in granule – alter the rate of sulfate supply to the plant. Backed up with slower release S⁰

Flavel et al., 2010, ISSC.

Higher S & P recoveries with

Ammonium sulfate - topdress

- Traditional fertilizer all S as sulfate (soluble).
 - Root Zone acidification, Co-placement of N/S, Reduced N loss.
 - In-furrow damage potential ~ apply 50% more N from AmS in furrow compared to urea in furrow.

 As a plant fertilizer – not enough N – looking at Urea/ Ammonium sulfate fluid fertilizers, compared to

fluids

Gypsum

Good source if available locally

>65% CaSO₄.2H₂O; <0.8% Na, <15% moisture

• 14-16% S.

- Good solubility (particle size)
 - Needs rainfall to get it to the right place
 - 100-300 mm will dissolve around 1 t/ha (soil texture)

Summary

- S is something to look out for.
- Spread out the needed application of S through the whole crop rotation.
- Deep soil test for S, the top soil can be deficient while there may be adequate in the subsoil
- Apply the S in a side-band or mid-row band away from the seed-row for susceptible crops.
- Apply a source of S that has both sulfate and fine-particle sized elemental S in the seed-row.
- Apply S later in the growth of the crop. Top-dressed S should be in the sulfate form.

Atomic Number:16 Atomic Mass:32.06

Micronutrients - Zinc

- Required in small amounts by plants.
 - 4 t/ha wheat crop removes ~100 g of Zn
- Essential for healthy growth enzyme cofactor.
- Levels are quite variable in soil and grain
 - Mallee grain Zn 19 mg/kg (seed quality)
 - North East grain Zn 29 mg/kg
- Difficult to pick up in soil tests due to low quantities in soil:
 - Zinc <0.5 mg/kg critical level
 - 22% Wimmera, 61% Mallee, 37% Western
 - Measured using a chelate (DTPA) mimicking the root extraction – generally poor indicator

Copper (Cu)

Iron (Fe)

Manganese (Mn)

Zinc (Zn)

Boron (B)

Molybdenum (Mo)

Chloride

Nickel

Silicon

Soil pH and nutrient availability

- Soil acidity (pH) drives much of the chemistry in the soil
- Liming will change micronutrient availability
- Deficiency and toxicity (eg B and Mn)
- Classic deficiencies
 - Zinc and iron on alkaline soils
 - Molybdenum on acid soils
- Cereals susceptible, canola relatively tolerant, Chickpeas very good

Zinc

Classic high pH deficiency

Also under high P use & high organic matter soils

Bronzing of upper surface of younger leaves

Canola relatively more efficient than wheat at getting soil zinc (Brennan and Bolland 2002)

In barley & wheat – classic inter-veinal soaked spots.

Classical symptoms in maize.

Response to Zn

Yield Response to 7.5 kg Zn - 2 of 6 sites

Grain Zn Increase on 5 of 6 sites

DTPA Zn test available but difficult to find yield responsive sites

Formulation with granulated fertilizers

- Some great developments over the past few years
 - Moving from supplements tipped in to a mixer giving a surface coat.
 - Some traces sprayed onto the dry product
 - Molybdenum sprayed on as sodium molybdate or molybdenum trioxide compunded in the granule - 0.050 kg/ha
 - Now co-granulated with an even mixture through the granule applied in the MAP/DAP melt (form depends on substrate used).
 - This gives a more controlled release rate and a more even field distribution.
 - Zinc zinc oxide and/or zinc oxysulphate 1-5 kg/ha

Food security also considers food quality- Example of Zinc

There are over 450,000 deaths annually < 5 years old in the developing world due to Zinc deficiency.

Grains often low in Zn – when grown on low Zn soils, even lower:

eg Australia – $23 \pm 7 \text{ mg/kg}$

